|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.21.21.0057.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^(\[Alpha] - 1) SphericalBesselJ[\[Mu], a z^r]
SphericalBesselJ[\[Nu], a z^r], z] ==
(2^(-2 - \[Mu] - \[Nu]) Pi z^\[Alpha] (a z^r)^(\[Mu] + \[Nu])
HypergeometricPFQ[{1 + \[Mu]/2 + \[Nu]/2, 3/2 + \[Mu]/2 + \[Nu]/2,
\[Alpha]/(2 r) + \[Mu]/2 + \[Nu]/2}, {3/2 + \[Mu],
1 + \[Alpha]/(2 r) + \[Mu]/2 + \[Nu]/2, 3/2 + \[Nu], 2 + \[Mu] + \[Nu]},
(-a^2) z^(2 r)])/((\[Alpha] + r (\[Mu] + \[Nu])) Gamma[3/2 + \[Mu]]
Gamma[3/2 + \[Nu]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Mu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], " ", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "\[Mu]", "-", "\[Nu]"]]], " ", "\[Pi]", " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["\[Mu]", "+", "\[Nu]"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["\[Alpha]", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Mu]"]], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["\[Alpha]", "+", RowBox[List["r", " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> j </mi> <mi> μ </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> j </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo>  </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> μ </mi> </mrow> <mo> - </mo> <mi> ν </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> α </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mrow> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> μ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> μ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mi> μ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mi> μ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"], "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Mu]", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["\[Mu]", "+", "\[Nu]", "+", "2"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> SphericalBesselJ </ci> <ci> μ </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <ci> SphericalBesselJ </ci> <ci> ν </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <pi /> <apply> <power /> <ci> z </ci> <ci> α </ci> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <plus /> <ci> μ </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> α </ci> <apply> <times /> <ci> r </ci> <apply> <plus /> <ci> μ </ci> <ci> ν </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> μ </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <ci> μ </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> μ </ci> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Mu]_", ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]], " ", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]_", ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "\[Mu]", "-", "\[Nu]"]]], " ", "\[Pi]", " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["\[Mu]", "+", "\[Nu]"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["\[Alpha]", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Mu]"]], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Mu]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["\[Alpha]", "+", RowBox[List["r", " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|