| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.21.22.0008.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | HankelTransform[SphericalBesselJ[\[Nu], t], {t, \[Mu]}, z] == 
  UnitStep[1 - z] (((-1)^(\[Mu]/4) Sqrt[Pi/2] Sqrt[z] ((-(-1)^(3/4)) z)^\[Mu] 
      Gamma[(1/4) (3 + 2 \[Mu] + 2 \[Nu])])/
     Gamma[(1/4) (3 - 2 \[Mu] + 2 \[Nu])]) Hypergeometric2F1Regularized[
     (1/4) (1 + 2 \[Mu] - 2 \[Nu]), (1/4) (3 + 2 \[Mu] + 2 \[Nu]), 1 + \[Mu], 
     z^2] + UnitStep[z - 1] ((Sqrt[Pi/2] z^(-(3/2) - \[Nu]) 
      Gamma[(1/4) (3 + 2 \[Mu] + 2 \[Nu])])/
     Gamma[(1/4) (1 + 2 \[Mu] - 2 \[Nu])]) Hypergeometric2F1Regularized[
     (1/4) (3 - 2 \[Mu] + 2 \[Nu]), (1/4) (3 + 2 \[Mu] + 2 \[Nu]), 
     3/2 + \[Nu], 1/z^2] /; z > 0 && z != 1 && Re[\[Mu] + \[Nu]] > -(3/2) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HankelTransform", "[", RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]", ",", "t"]], "]"]], ",", RowBox[List["{", RowBox[List["t", ",", "\[Mu]"]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["1", "-", "z"]], "]"]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "4"]]], " ", SqrtBox[FractionBox["\[Pi]", "2"]], " ", SqrtBox["z"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]], ")"]], "\[Mu]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]], " "]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["z", "-", "1"]], "]"]], FractionBox[RowBox[List[SqrtBox[FractionBox["\[Pi]", "2"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "&&", RowBox[List["z", "\[NotEqual]", "1"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Mu]", "+", "\[Nu]"]], "]"]], ">", RowBox[List["-", FractionBox["3", "2"]]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mrow>  <msub>  <mi> ℋ </mi>  <mrow>  <mi> t </mi>  <mo> ; </mo>  <mi> μ </mi>  </mrow>  </msub>  <mo> [ </mo>  <mrow>  <msub>  <mi> j </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mi> t </mi>  <mo> ) </mo>  </mrow>  <mo> ] </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mtext>   </mtext>  <mrow>  <semantics>  <mi> θ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> UnitStep </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> μ </mi>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> μ </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mi> μ </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]]]], Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["\[Mu]", "+", "1"]], Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[SuperscriptBox["z", "2"], Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1Regularized] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <semantics>  <mi> θ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> UnitStep </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]]]], Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]]]], Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["\[Nu]", "+", FractionBox["3", "2"]]], Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[FractionBox["1", SuperscriptBox["z", "2"]], Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1Regularized] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> z </mi>  <mo> ≠ </mo>  <mn> 1 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> μ </mi>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <times />  <apply>  <apply>  <ci> Subscript </ci>  <ci> ℋ </ci>  <apply>  <ci> CompoundExpression </ci>  <ci> t </ci>  <ci> μ </ci>  </apply>  </apply>  <apply>  <ci> SphericalBesselJ </ci>  <ci> ν </ci>  <ci> t </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <ci> UnitStep </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> μ </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </apply>  <ci> z </ci>  </apply>  <ci> μ </ci>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1Regularized </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <plus />  <ci> μ </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <ci> UnitStep </ci>  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1Regularized </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <plus />  <ci> ν </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <gt />  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <neq />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <gt />  <apply>  <real />  <apply>  <plus />  <ci> μ </ci>  <ci> ν </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HankelTransform", "[", RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]_", ",", "t_"]], "]"]], ",", RowBox[List["{", RowBox[List["t_", ",", "\[Mu]_"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["1", "-", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "4"]]], " ", SqrtBox[FractionBox["\[Pi]", "2"]], " ", SqrtBox["z"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]], ")"]], "\[Mu]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", SuperscriptBox["z", "2"]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]], "+", FractionBox[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["z", "-", "1"]], "]"]], " ", RowBox[List["(", RowBox[List[SqrtBox[FractionBox["\[Pi]", "2"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "&&", RowBox[List["z", "\[NotEqual]", "1"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Mu]", "+", "\[Nu]"]], "]"]], ">", RowBox[List["-", FractionBox["3", "2"]]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |