|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.21.27.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SphericalBesselJ[\[Nu], z] == ((2^(-1 - \[Nu]) Sqrt[Pi] z^\[Nu])/
Gamma[3/2 + \[Nu]]) Hypergeometric0F1[3/2 + \[Nu], -(z^2/4)] /;
!(Element[-(1/2) - \[Nu], Integers] && -(1/2) - \[Nu] > 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Nu]"]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], "]"]]], RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]]], "]"]]]]]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], ">", "0"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> j </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> ν </mi> </msup> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["\[Nu]", "+", FractionBox["3", "2"]]], Hypergeometric0F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]], Hypergeometric0F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric0F1] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ∉ </mo> <semantics> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox["\[DoubleStruckCapitalN]", "+"], Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> SphericalBesselJ </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> ν </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric0F1 </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Nu]"]]], ")"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], "]"]]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], ">", "0"]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|