Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Catalan






Mathematica Notation

Traditional Notation









Constants > Catalan > Series representations > Generalized power series





http://functions.wolfram.com/02.07.06.0003.01









  


  










Input Form





Catalan == 3 Sum[(1/2^(4 k)) (1/(2 (8 k + 1)^2) - 1/(2 (8 k + 2)^2) + 1/(2^2 (8 k + 3)^2) - 1/(2^3 (8 k + 5)^2) + 1/(2^3 (8 k + 6)^2) - 1/(2^4 (8 k + 7)^2)), {k, 0, Infinity}] - 2 Sum[(1/2^(12 k)) (1/(2^3 (8 k + 1)^2) + 1/(2^4 (8 k + 2)^2) + 1/(2^6 (8 k + 3)^2) - 1/(2^9 (8 k + 5)^2) - 1/(2^10 (8 k + 6)^2) - 1/(2^12 (8 k + 7)^2)), {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List["Catalan", "\[Equal]", RowBox[List[RowBox[List["3", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", SuperscriptBox["2", RowBox[List["4", " ", "k"]]]], RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "1"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "2"]], ")"]], "2"]]]], "+", FractionBox["1", RowBox[List[SuperscriptBox["2", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "3"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "5"]], ")"]], "2"]]]], "+", FractionBox["1", RowBox[List[SuperscriptBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "6"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "7"]], ")"]], "2"]]]]]], ")"]]]]]]]], "-", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", SuperscriptBox["2", RowBox[List["12", " ", "k"]]]], RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "1"]], ")"]], "2"]]]], "+", FractionBox["1", RowBox[List[SuperscriptBox["2", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "2"]], ")"]], "2"]]]], "+", FractionBox["1", RowBox[List[SuperscriptBox["2", "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "3"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "9"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "5"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "10"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "6"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "12"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "7"]], ")"]], "2"]]]]]], ")"]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, Function[Catalan]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mn> 2 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mn> 2 </mn> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 9 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 10 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 12 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <ci> Catalan </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 7 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 9 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 10 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 12 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 7 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "Catalan", "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["3", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "1"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "2"]], ")"]], "2"]]]], "+", FractionBox["1", RowBox[List[SuperscriptBox["2", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "3"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "5"]], ")"]], "2"]]]], "+", FractionBox["1", RowBox[List[SuperscriptBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "6"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "7"]], ")"]], "2"]]]]]], SuperscriptBox["2", RowBox[List["4", " ", "k"]]]]]]]], "-", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "1"]], ")"]], "2"]]]], "+", FractionBox["1", RowBox[List[SuperscriptBox["2", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "2"]], ")"]], "2"]]]], "+", FractionBox["1", RowBox[List[SuperscriptBox["2", "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "3"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "9"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "5"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "10"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "6"]], ")"]], "2"]]]], "-", FractionBox["1", RowBox[List[SuperscriptBox["2", "12"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "k"]], "+", "7"]], ")"]], "2"]]]]]], SuperscriptBox["2", RowBox[List["12", " ", "k"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29