|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.07.06.0010.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Catalan == (Pi EulerGamma)/8 + (Pi/4) Log[2] +
(1/4) Sum[(2^k k!^2 PolyGamma[k + 3/2])/(2 k + 1)!, {k, 0, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List["Catalan", "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "EulerGamma"]], "8"], "+", RowBox[List[FractionBox["\[Pi]", "4"], RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox["2", "k"], " ", SuperscriptBox[RowBox[List["k", "!"]], "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", FractionBox["3", "2"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", Function[Catalan]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 8 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <ci> Catalan </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <eulergamma /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "Catalan", "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "EulerGamma"]], "8"], "+", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox["2", "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "2"], " ", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", FractionBox["3", "2"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|