|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.07.07.0026.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Catalan == (Pi/4) Log[2] - (1/2) Integrate[(1/Sqrt[t]) (Log[1 - t]/(1 + t)),
{t, 0, 1}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List["Catalan", "\[Equal]", RowBox[List[RowBox[List[FractionBox["\[Pi]", "4"], RowBox[List["Log", "[", "2", "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[FractionBox["1", SqrtBox["t"]], FractionBox[RowBox[List["Log", "[", RowBox[List["1", "-", "t"]], "]"]], RowBox[List["1", "+", "t"]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", Function[Catalan]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mn> 1 </mn> </msubsup> <mrow> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msqrt> <mi> t </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> t </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <ci> Catalan </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <times /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> t </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> t </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "Catalan", "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["Log", "[", "2", "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[FractionBox[RowBox[List["Log", "[", RowBox[List["1", "-", "t"]], "]"]], RowBox[List[SqrtBox["t"], " ", RowBox[List["(", RowBox[List["1", "+", "t"]], ")"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|