
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/02.06.07.0020.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
EulerGamma == Integrate[(1/t) (1/(t^2 + 1) - BesselJ[0, 2 t]),
{t, 0, Infinity}]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List["EulerGamma", "\[Equal]", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox["1", "t"], RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["t", "2"], "+", "1"]]], "-", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", "t"]]]], "]"]]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mfrac> <mn> 1 </mn> <mi> t </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> t </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mrow> <msub> <mi> J </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <eulergamma /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> BesselJ </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> t </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "EulerGamma", "]"]], "\[RuleDelayed]", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["t", "2"], "+", "1"]]], "-", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", "t"]]]], "]"]]]], "t"], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|