  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/02.06.09.0006.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    EulerGamma == Limit[LogIntegral[E^(\[Alpha] x)] - Log[\[Alpha]], 
    \[Alpha] -> 0] - Log[x] /; x > 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["EulerGamma", "\[Equal]", RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List[RowBox[List["LogIntegral", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Alpha]", " ", "x"]]], "]"]], "-", RowBox[List["Log", "[", "\[Alpha]", "]"]]]], ",", RowBox[List["\[Alpha]", "\[Rule]", "0"]]]], "]"]], "-", RowBox[List["Log", "[", "x", "]"]]]]]], "/;", RowBox[List["x", ">", "0"]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mrow>  <munder>  <mi> lim </mi>  <mrow>  <mi> α </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mn> 0 </mn>  </mrow>  </munder>  <mo> ⁢ </mo>  <mtext>   </mtext>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> li </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> α </mi>  <mo> ⁢ </mo>  <mi> x </mi>  </mrow>  </msup>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> α </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> x </mi>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <eulergamma />  <apply>  <plus />  <apply>  <limit />  <bvar>  <ci> α </ci>  </bvar>  <condition>  <apply>  <tendsto />  <ci> α </ci>  <cn type='integer'> 0 </cn>  </apply>  </condition>  <apply>  <plus />  <apply>  <ci> LogIntegral </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> α </ci>  <ci> x </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ln />  <ci> α </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ln />  <ci> x </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <gt />  <ci> x </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "EulerGamma", "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List[RowBox[List["LogIntegral", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Alpha]", " ", "x"]]], "]"]], "-", RowBox[List["Log", "[", "\[Alpha]", "]"]]]], ",", RowBox[List["\[Alpha]", "\[Rule]", "0"]]]], "]"]], "-", RowBox[List["Log", "[", "x", "]"]]]], "/;", RowBox[List["x", ">", "0"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |