|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.06.09.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EulerGamma == Limit[LogIntegral[E^(\[Alpha] x)] - Log[\[Alpha]],
\[Alpha] -> 0] - Log[x] /; x > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["EulerGamma", "\[Equal]", RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List[RowBox[List["LogIntegral", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Alpha]", " ", "x"]]], "]"]], "-", RowBox[List["Log", "[", "\[Alpha]", "]"]]]], ",", RowBox[List["\[Alpha]", "\[Rule]", "0"]]]], "]"]], "-", RowBox[List["Log", "[", "x", "]"]]]]]], "/;", RowBox[List["x", ">", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> α </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mn> 0 </mn> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> li </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> α </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> x </mi> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <eulergamma /> <apply> <plus /> <apply> <limit /> <bvar> <ci> α </ci> </bvar> <condition> <apply> <tendsto /> <ci> α </ci> <cn type='integer'> 0 </cn> </apply> </condition> <apply> <plus /> <apply> <ci> LogIntegral </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> α </ci> <ci> x </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> α </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> x </ci> </apply> </apply> </apply> </apply> <apply> <gt /> <ci> x </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "EulerGamma", "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List[RowBox[List["LogIntegral", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Alpha]", " ", "x"]]], "]"]], "-", RowBox[List["Log", "[", "\[Alpha]", "]"]]]], ",", RowBox[List["\[Alpha]", "\[Rule]", "0"]]]], "]"]], "-", RowBox[List["Log", "[", "x", "]"]]]], "/;", RowBox[List["x", ">", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|