|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.06.09.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EulerGamma ==
Log[(Pi^2/6) Limit[(1/Log[n]) Product[UnitStep[n - Subscript[p, k]]
(1 + 1/Subscript[p, k]), {k, 1, Infinity}], n -> Infinity]] /;
Element[Subscript[p, k], Primes]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["EulerGamma", "\[Equal]", RowBox[List["Log", "[", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "6"], RowBox[List["Limit", "[", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["Log", "[", "n", "]"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["n", "-", SubscriptBox["p", "k"]]], "]"]], RowBox[List["(", RowBox[List["1", "+", FractionBox["1", SubscriptBox["p", "k"]]]], ")"]]]]]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]], "]"]]]], "/;", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <msub> <mi> p </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msub> <mi> p </mi> <mi> k </mi> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[Primes]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <eulergamma /> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <limit /> <bvar> <ci> n </ci> </bvar> <condition> <apply> <tendsto /> <ci> n </ci> <infinity /> </apply> </condition> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ln /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> UnitStep </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <primes /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "EulerGamma", "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Log", "[", RowBox[List[FractionBox["1", "6"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Limit", "[", RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["n", "-", SubscriptBox["p", "k"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox["1", SubscriptBox["p", "k"]]]], ")"]]]]]], RowBox[List["Log", "[", "n", "]"]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]], "]"]], "/;", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|