|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.06.09.0016.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EulerGamma == Limit[Sum[1/k, {k, 1, n}] - Log[n] -
Sum[Zeta[k, n + 1]/k, {k, 2, Infinity}], n -> Infinity]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List["EulerGamma", "\[Equal]", RowBox[List["Limit", "[", RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox["1", "k"]]], "-", RowBox[List["Log", "[", "n", "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], FractionBox[RowBox[List["Zeta", "[", RowBox[List["k", ",", RowBox[List["n", "+", "1"]]]], "]"]], "k"]]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mo>  </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mn> 1 </mn> <mi> k </mi> </mfrac> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["k", Zeta, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", "1"]], Zeta, Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]]] </annotation> </semantics> <mi> k </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <eulergamma /> <apply> <limit /> <bvar> <ci> n </ci> </bvar> <condition> <apply> <tendsto /> <ci> n </ci> <infinity /> </apply> </condition> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Zeta </ci> <ci> k </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "EulerGamma", "]"]], "\[RuleDelayed]", RowBox[List["Limit", "[", RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox["1", "k"]]], "-", RowBox[List["Log", "[", "n", "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], FractionBox[RowBox[List["Zeta", "[", RowBox[List["k", ",", RowBox[List["n", "+", "1"]]]], "]"]], "k"]]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|