Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Glaisher






Mathematica Notation

Traditional Notation









Constants > Glaisher > Product representations





http://functions.wolfram.com/02.08.08.0003.01









  


  










Input Form





Glaisher == 2^(9/32) E^(29/192 + EulerGamma/96 + (3 Zeta[3])/(64 Pi^2) + Derivative[1][Zeta][-1] - 2 Derivative[1, 0][Zeta][-2, 1/4]) Pi^(1/32) (Product[(4 k + 1)^(1/(4 k + 1)^3), {k, 1, Infinity}]/ Product[(4 j + 3)^(1/(4 j + 3)^3), {j, 1, Infinity}])^(1/Pi^3)










Standard Form





Cell[BoxData[RowBox[List["Glaisher", "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List["9", "/", "32"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["29", "192"], "+", FractionBox["EulerGamma", "96"], "+", FractionBox[RowBox[List["3", " ", RowBox[List["Zeta", "[", "3", "]"]]]], RowBox[List["64", " ", SuperscriptBox["\[Pi]", "2"]]]], "+", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "1"]], "]"]], "-", RowBox[List["2", " ", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "2"]], ",", FractionBox["1", "4"]]], "]"]]]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List["1", "/", "32"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", "k"]], "+", "1"]], ")"]], FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", "k"]], "+", "1"]], ")"]], "3"]]]]], ")"]], "/", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", "j"]], "+", "3"]], ")"]], FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", "j"]], "+", "3"]], ")"]], "3"]]]]]]], ")"]], FractionBox["1", SuperscriptBox["\[Pi]", "3"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mi> A </mi> <annotation encoding='Mathematica'> TagBox[&quot;A&quot;, Function[List[], Glaisher]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 32 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <msup> <mi> &#950; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mn> 29 </mn> <mn> 192 </mn> </mfrac> <mo> + </mo> <mfrac> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> <mn> 96 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> &#960; </mi> <mn> 32 </mn> </mroot> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </msup> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> <mfrac> <mn> 1 </mn> <msup> <mi> &#960; </mi> <mn> 3 </mn> </msup> </mfrac> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <ci> Glaisher </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 9 <sep /> 32 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> Zeta </ci> </apply> <cn type='integer'> -2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <cn type='rational'> 29 <sep /> 192 </cn> <apply> <times /> <eulergamma /> <apply> <power /> <cn type='integer'> 96 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 32 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <pi /> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "Glaisher", "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["2", RowBox[List["9", "/", "32"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["29", "192"], "+", FractionBox["EulerGamma", "96"], "+", FractionBox[RowBox[List["3", " ", RowBox[List["Zeta", "[", "3", "]"]]]], RowBox[List["64", " ", SuperscriptBox["\[Pi]", "2"]]]], "+", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "1"]], "]"]], "-", RowBox[List["2", " ", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "2"]], ",", FractionBox["1", "4"]]], "]"]]]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List["1", "/", "32"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "k"]], "+", "1"]], ")"]], FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "k"]], "+", "1"]], ")"]], "3"]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "j"]], "+", "3"]], ")"]], FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "j"]], "+", "3"]], ")"]], "3"]]]]]], ")"]], FractionBox["1", SuperscriptBox["\[Pi]", "3"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02