|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.02.10.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GoldenRatio == 1 + ContinueFraction[{1, 1}, {k, 1, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List["GoldenRatio", "\[Equal]", RowBox[List["1", "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", Function[GoldenRatio]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msubsup> <mrow> <msub> <mi> Κ </mi> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 1 </mn> <mi> ∞ </mi> </msubsup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <ci> GoldenRatio </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <apply> <ci> Subscript </ci> <ci> Κ </ci> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "GoldenRatio", "]"]], "\[RuleDelayed]", RowBox[List["1", "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|