|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.09.09.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Khinchin ==
Limit[Exp[(1/Log[2]) Sum[(Zeta[2 m] - 1) (1/m) Sum[(-1)^(k + 1)/k,
{k, 1, 2 m - 1}], {m, 1, 1 + Floor[n Log[4, 10]]}]], n -> Infinity]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List["Khinchin", "\[Equal]", RowBox[List["Limit", "[", RowBox[List[RowBox[List["Exp", "[", RowBox[List[FractionBox["1", RowBox[List["Log", "[", "2", "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], RowBox[List["1", "+", RowBox[List["Floor", "[", RowBox[List["n", " ", RowBox[List["Log", "[", RowBox[List["4", ",", "10"]], "]"]]]], "]"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["2", " ", "m"]], "]"]], "-", "1"]], ")"]], FractionBox["1", "m"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List[RowBox[List["2", " ", "m"]], "-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "+", "1"]]], "k"]]]]]]]]], "]"]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mi> K </mi> <annotation encoding='Mathematica'> TagBox["K", Function[List[], Khinchin]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mo> ⌊ </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msub> <mi> log </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mn> 10 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List["2", " ", "m"]], Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mi> k </mi> </mfrac> </mrow> </mrow> </mrow> </mrow> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <ci> Khinchin </ci> <apply> <limit /> <bvar> <ci> n </ci> </bvar> <condition> <apply> <tendsto /> <ci> n </ci> <infinity /> </apply> </condition> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <log /> <logbase> <cn type='integer'> 4 </cn> </logbase> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "Khinchin", "]"]], "\[RuleDelayed]", RowBox[List["Limit", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], RowBox[List["1", "+", RowBox[List["Floor", "[", RowBox[List["n", " ", RowBox[List["Log", "[", RowBox[List["4", ",", "10"]], "]"]]]], "]"]]]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["2", " ", "m"]], "]"]], "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List[RowBox[List["2", " ", "m"]], "-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "+", "1"]]], "k"]]]]], "m"]]], RowBox[List["Log", "[", "2", "]"]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|