|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.03.06.0012.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pi == Sum[(1/16^k) (4/(8 k + 1) - 2/(8 k + 4) - 1/(8 k + 5) - 1/(8 k + 6)),
{k, 0, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List["\[Pi]", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", SuperscriptBox["16", "k"]], RowBox[List["(", RowBox[List[FractionBox["4", RowBox[List[RowBox[List["8", " ", "k"]], "+", "1"]]], "-", FractionBox["2", RowBox[List[RowBox[List["8", " ", "k"]], "+", "4"]]], "-", FractionBox["1", RowBox[List[RowBox[List["8", " ", "k"]], "+", "5"]]], "-", FractionBox["1", RowBox[List[RowBox[List["8", " ", "k"]], "+", "6"]]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mi> π </mi> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mn> 16 </mn> <mi> k </mi> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 2 </mn> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 4 </mn> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <pi /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 16 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "\[Pi]", "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[FractionBox["4", RowBox[List[RowBox[List["8", " ", "k"]], "+", "1"]]], "-", FractionBox["2", RowBox[List[RowBox[List["8", " ", "k"]], "+", "4"]]], "-", FractionBox["1", RowBox[List[RowBox[List["8", " ", "k"]], "+", "5"]]], "-", FractionBox["1", RowBox[List[RowBox[List["8", " ", "k"]], "+", "6"]]]]], SuperscriptBox["16", "k"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|