|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.03.08.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2/Pi == Limit[Product[(1/2) Nest[Sqrt[2 + #1] & , 0, k], {k, 1, n}],
n -> Infinity]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[FractionBox["2", "\[Pi]"], "\[Equal]", RowBox[List["Limit", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[FractionBox["1", "2"], RowBox[List["Nest", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List["2", "+", "#"]]], "&"]], ",", "0", ",", "k"]], "]"]]]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mn> 2 </mn> <mi> π </mi> </mfrac> <mo> ⩵ </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> Nest </mi> <mo> [ </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> #1 </mi> </mrow> </msqrt> <mo> & </mo> </mrow> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mi> k </mi> </mrow> <mo> ] </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <limit /> <bvar> <ci> n </ci> </bvar> <condition> <apply> <tendsto /> <ci> n </ci> <infinity /> </apply> </condition> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ci> Nest </ci> <apply> <ci> Function </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 0 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox["2", "\[Pi]"], "]"]], "\[RuleDelayed]", RowBox[List["Limit", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Nest", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List["2", "+", "#1"]]], "&"]], ",", "0", ",", "k"]], "]"]]]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|