| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/02.03.09.0004.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Pi == Limit[(2^(4 n + 1) n!^4)/((2 n + 1) (2 n)!^2), n -> Infinity] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List["\[Pi]", "\[Equal]", RowBox[List["Limit", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["4", " ", "n"]], "+", "1"]]], " ", SuperscriptBox[RowBox[List["n", "!"]], "4"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", SuperscriptBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]], "2"]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mi> π </mi>  <mo> ⩵ </mo>  <mrow>  <munder>  <mi> lim </mi>  <mrow>  <mi> n </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  </munder>  <mo> ⁢ </mo>  <mtext>   </mtext>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <pi />  <apply>  <limit />  <bvar>  <ci> n </ci>  </bvar>  <condition>  <apply>  <tendsto />  <ci> n </ci>  <infinity />  </apply>  </condition>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> n </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "\[Pi]", "]"]], "\[RuleDelayed]", RowBox[List["Limit", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["4", " ", "n"]], "+", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "!"]], ")"]], "4"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]], ")"]], "2"]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |