Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Pi






Mathematica Notation

Traditional Notation









Constants > Pi > Limit representations





http://functions.wolfram.com/02.03.09.0010.01









  


  










Input Form





Pi == Limit[(2 Subscript[a, k]^2)/Subscript[s, k], n -> Infinity] /; Subscript[a, k] == (1/2) (Subscript[a, k - 1] + Subscript[b, k - 1]) && Subscript[b, k] == Sqrt[Subscript[a, k - 1] Subscript[b, k - 1]] && Subscript[s, k] == Subscript[s, k - 1] - 2^k Subscript[c, k] && Subscript[c, k] == Subscript[a, k]^2 - Subscript[b, k]^2 && Subscript[a, 0] == 1 && Subscript[b, 0] == 1/Sqrt[2] && Subscript[s, 0] == 1/2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Pi]", "\[Equal]", RowBox[List["Limit", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SubsuperscriptBox["a", "k", "2"]]], SubscriptBox["s", "k"]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]], "/;", " ", RowBox[List[RowBox[List[SubscriptBox["a", "k"], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["a", RowBox[List["k", "-", "1"]]], "+", SubscriptBox["b", RowBox[List["k", "-", "1"]]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", SqrtBox[RowBox[List[SubscriptBox["a", RowBox[List["k", "-", "1"]]], " ", SubscriptBox["b", RowBox[List["k", "-", "1"]]]]]]]], "\[And]", RowBox[List[SubscriptBox["s", "k"], "\[Equal]", RowBox[List[SubscriptBox["s", RowBox[List["k", "-", "1"]]], "-", RowBox[List[SuperscriptBox["2", "k"], " ", SubscriptBox["c", "k"]]]]]]], "\[And]", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", RowBox[List[SubsuperscriptBox["a", "k", "2"], "-", SubsuperscriptBox["b", "k", "2"]]]]], "\[And]", RowBox[List[SubscriptBox["a", "0"], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["b", "0"], "\[Equal]", FractionBox["1", SqrtBox["2"]]]], "\[And]", RowBox[List[SubscriptBox["s", "0"], "\[Equal]", FractionBox["1", "2"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> &#960; </mi> <mo> &#10869; </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> n </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> </munder> <mo> &#8290; </mo> <mtext> &#8201; </mtext> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msubsup> <mi> a </mi> <mi> k </mi> <mn> 2 </mn> </msubsup> </mrow> <msub> <mi> s </mi> <mi> k </mi> </msub> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <msub> <mi> b </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> &#10869; </mo> <msqrt> <mrow> <msub> <mi> a </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#8290; </mo> <msub> <mi> b </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> </msqrt> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> s </mi> <mi> k </mi> </msub> <mo> &#10869; </mo> <mrow> <msub> <mi> s </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msub> <mi> c </mi> <mi> k </mi> </msub> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> &#10869; </mo> <mrow> <msubsup> <mi> a </mi> <mi> k </mi> <mn> 2 </mn> </msubsup> <mo> - </mo> <msubsup> <mi> b </mi> <mi> k </mi> <mn> 2 </mn> </msubsup> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> &#10869; </mo> <mfrac> <mn> 1 </mn> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> s </mi> <mn> 0 </mn> </msub> <mo> &#10869; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <pi /> <apply> <limit /> <bvar> <ci> n </ci> </bvar> <condition> <apply> <tendsto /> <ci> n </ci> <infinity /> </apply> </condition> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> s </ci> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> s </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> s </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> s </ci> <cn type='integer'> 0 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "\[Pi]", "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Limit", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SubsuperscriptBox["a", "k", "2"]]], SubscriptBox["s", "k"]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "k"], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["a", RowBox[List["k", "-", "1"]]], "+", SubscriptBox["b", RowBox[List["k", "-", "1"]]]]], ")"]]]]]], "&&", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", SqrtBox[RowBox[List[SubscriptBox["a", RowBox[List["k", "-", "1"]]], " ", SubscriptBox["b", RowBox[List["k", "-", "1"]]]]]]]], "&&", RowBox[List[SubscriptBox["s", "k"], "\[Equal]", RowBox[List[SubscriptBox["s", RowBox[List["k", "-", "1"]]], "-", RowBox[List[SuperscriptBox["2", "k"], " ", SubscriptBox["c", "k"]]]]]]], "&&", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", RowBox[List[SubsuperscriptBox["a", "k", "2"], "-", SubsuperscriptBox["b", "k", "2"]]]]], "&&", RowBox[List[SubscriptBox["a", "0"], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["b", "0"], "\[Equal]", FractionBox["1", SqrtBox["2"]]]], "&&", RowBox[List[SubscriptBox["s", "0"], "\[Equal]", FractionBox["1", "2"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29