Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCos






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCos[z] > Transformations > Related transformations > Differences involving the direct function > Involving sinh-1(z)





http://functions.wolfram.com/01.13.16.0181.01









  


  










Input Form





ArcCos[x] - I ArcSinh[y] == (-((I ((-I) x y + Sqrt[1 - x^2] Sqrt[1 + y^2]))/ Sqrt[((-I) x y + Sqrt[1 - x^2] Sqrt[1 + y^2])^2])) ArcSinh[Sqrt[1 - x^2] y - I x Sqrt[1 + y^2]] + (Pi/2) (((-I) x y + Sqrt[1 - x^2] Sqrt[1 + y^2])/ Sqrt[((-I) x y + Sqrt[1 - x^2] Sqrt[1 + y^2])^2]) + Pi (1 + ((-I) x y + Sqrt[1 - x^2] Sqrt[1 + y^2])/ Sqrt[((-I) x y + Sqrt[1 - x^2] Sqrt[1 + y^2])^2]) Floor[(Pi - Arg[I x + Sqrt[1 - x^2]] - Arg[-y + Sqrt[1 + y^2]])/(2 Pi)] - Pi (1 - ((-I) x y + Sqrt[1 - x^2] Sqrt[1 + y^2])/ Sqrt[((-I) x y + Sqrt[1 - x^2] Sqrt[1 + y^2])^2]) Floor[(Arg[I x + Sqrt[1 - x^2]] + Arg[-y + Sqrt[1 + y^2]])/(2 Pi)]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCos", "[", "x", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", "y", "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]], " "]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], RowBox[List["ArcSinh", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", "y"]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", "2"], " ", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Arg", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "-", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "y"]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "y"]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mfrac> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> </mrow> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arccos /> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <arcsinh /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <pi /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> y </ci> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcCos", "[", "x_", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", "y_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]]]], ")"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", "y"]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Arg", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "-", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "y"]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "x", " ", "y"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "y"]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02