|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.13.19.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sign[ArcCos[x + I y]] ==
(Pi - 2 ArcTan[-y + (x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)^(1/4)
Cos[(1/2) ArcTan[1 - x^2 + y^2, -2 x y]],
x + (x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)^(1/4)
Sin[(1/2) ArcTan[1 - x^2 + y^2, -2 x y]]] +
2 I Log[Sqrt[(y - (x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)^(1/4)
Cos[(1/2) ArcTan[1 - x^2 + y^2, -2 x y]])^2 +
(x + (x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)^(1/4)
Sin[(1/2) ArcTan[1 - x^2 + y^2, -2 x y]])^2]])/
(2 Sqrt[(1/4) (Pi - 2 ArcTan[-y + (4 x^2 y^2 + (1 - x^2 + y^2)^2)^(1/4)
Cos[(1/2) ArcTan[1 - x^2 + y^2, -2 x y]],
x + (4 x^2 y^2 + (1 - x^2 + y^2)^2)^(1/4)
Sin[(1/2) ArcTan[1 - x^2 + y^2, -2 x y]]])^2 +
Log[Sqrt[(y - (x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)^(1/4)
Cos[(1/2) ArcTan[1 - x^2 + y^2, -2 x y]])^2 +
(x + (x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)^(1/4)
Sin[(1/2) ArcTan[1 - x^2 + y^2, -2 x y]])^2]]^2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Sign", "[", RowBox[List["ArcCos", "[", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "y"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ",", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["y", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ")"]], "2"]]], ")"]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "y"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["x", "2"], " ", SuperscriptBox["y", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ",", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["x", "2"], " ", SuperscriptBox["y", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]]]], "]"]]]]]], ")"]], "2"]]], "+", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["y", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ")"]], "2"]]], ")"]]]], "]"]], "2"]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sgn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mroot> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> y </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> y </mi> <mo> - </mo> <mrow> <mroot> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> π </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mroot> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> y </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> y </mi> <mo> - </mo> <mrow> <mroot> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Sign </ci> <apply> <arccos /> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> y </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <ln /> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> y </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <root /> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> y </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> y </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sign", "[", RowBox[List["ArcCos", "[", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "y_"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["2", " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "y"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ",", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Log", "[", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["y", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ")"]], "2"]]]], "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "y"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["x", "2"], " ", SuperscriptBox["y", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ",", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["x", "2"], " ", SuperscriptBox["y", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]]]], "]"]]]]]], ")"]], "2"]]], "+", SuperscriptBox[RowBox[List["Log", "[", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["y", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "x", " ", "y"]]]], "]"]]]], "]"]]]]]], ")"]], "2"]]]], "]"]], "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|