Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCos






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCos[z] > Representations through equivalent functions > With inverse function > Involving cos-1(sin(z))





http://functions.wolfram.com/01.13.27.2514.01









  


  










Input Form





ArcCos[Sin[z]] == Piecewise[ {{Pi/2 + (-1)^Floor[Re[z]/Pi + 1/2] ((-Pi) Floor[Re[z]/Pi - 1/2] + z), Element[Re[z]/Pi + 1/2, Integers] && Im[z] <= 0}, {Pi/2 + (-1)^Floor[Re[z]/Pi + 1/2] (Pi Floor[Re[z]/Pi + 1/2] - z), True}}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCos", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]], "\[Equal]", RowBox[List["Piecewise", "[", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[Pi]"]], " ", RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "-", FractionBox["1", "2"]]], "]"]]]], "+", "z"]], ")"]]]]]], ",", RowBox[List[RowBox[List[RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[LessEqual]", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]]]], "-", "z"]], ")"]]]]]], ",", "True"]], "}"]]]], "}"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mo> &#62305; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> </mtd> <mtd> <mi> True </mi> </mtd> </mtr> </mtable> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccos /> <apply> <sin /> <ci> z </ci> </apply> </apply> <apply> <ci> Piecewise </ci> <list> <list> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <plus /> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <integers /> </apply> <apply> <leq /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </list> <list> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <true /> </list> </list> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCos", "[", RowBox[List["Sin", "[", "z_", "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["\[Piecewise]", GridBox[List[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[Pi]"]], " ", RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "-", FractionBox["1", "2"]]], "]"]]]], "+", "z"]], ")"]]]]]], RowBox[List[RowBox[List[RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[LessEqual]", "0"]]]]], List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]]]], "-", "z"]], ")"]]]]]], "True"]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02