Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCos






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCos[z] > Representations through equivalent functions > With related functions > Involving sec-1 > Involving cos-1(2 z (1-z2)1/2) > Involving cos-1(2 z (1-z2)1/2) and sec-1(1/z)





http://functions.wolfram.com/01.13.27.1157.01









  


  










Input Form





ArcCos[2 z Sqrt[1 - z^2]] == Pi/2 - ((2 Sqrt[1 - 2 z^2] Sqrt[-z^2 + z^4])/(Sqrt[-z^2] Sqrt[-1 + z^2] Sqrt[-1 + 2 z^2])) ArcSec[1/z] + ((Pi Sqrt[1 - 2 z^2] Sqrt[-z^2 + z^4])/(2 Sqrt[-z^2] Sqrt[-1 + z^2] Sqrt[-1 + 2 z^2])) ((-Sqrt[-(1/z)]) Sqrt[-z] Sqrt[1/(1 - Sqrt[2] z)] Sqrt[1 - Sqrt[2] z] + Sqrt[1/z] Sqrt[z] Sqrt[1/(1 + Sqrt[2] z)] Sqrt[1 + Sqrt[2] z] - Sqrt[z^2]/z - Sqrt[-z^2 + z^4]/ (z Sqrt[-1 + z^2]) + 2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCos", "[", RowBox[List["2", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List[FractionBox[RowBox[List["2", SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", SuperscriptBox["z", "4"]]]]]], RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]]]]], RowBox[List["ArcSec", "[", FractionBox["1", "z"], "]"]]]], "+", " ", RowBox[List[FractionBox[RowBox[List["\[Pi]", SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", SuperscriptBox["z", "4"]]]]]], RowBox[List["2", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], " ", SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List[SqrtBox["2"], " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SqrtBox["2"], " ", "z"]]]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", "z"]]]]]]], "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"], "-", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", SuperscriptBox["z", "4"]]]], RowBox[List["z", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]]], "+", "2"]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msqrt> </mrow> <mo> - </mo> <mfrac> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mtext> </mtext> </mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsec /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCos", "[", RowBox[List["2", " ", "z_", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z_", "2"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["\[Pi]", "2"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", SuperscriptBox["z", "4"]]]]]], ")"]], " ", RowBox[List["ArcSec", "[", FractionBox["1", "z"], "]"]]]], RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", SuperscriptBox["z", "4"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], " ", SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List[SqrtBox["2"], " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SqrtBox["2"], " ", "z"]]]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", "z"]]]]]]], "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"], "-", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", SuperscriptBox["z", "4"]]]], RowBox[List["z", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]]], "+", "2"]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21