Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCosh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCosh[z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself > In the lower half-plane





http://functions.wolfram.com/01.26.06.0057.01









  


  










Input Form





ArcCosh[z] == Subscript[F, Infinity][z] /; (Subscript[F, n][z] == (-I) (Pi/2 - Sum[(Pochhammer[1/2, k] z^(2 k + 1))/ ((1 + 2 k) k!), {k, 0, n}]) == ArcCosh[z] - (I/(2 Sqrt[Pi])) z^(3 + 2 n) Gamma[3/2 + n]^2 HypergeometricPFQRegularized[{1, 3/2 + n, 3/2 + n}, {2 + n, 5/2 + n}, z^2] && Element[n, Integers] && n >= 0) && Im[z] < 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCosh", "[", "z", "]"]], "\[Equal]", RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", "z", "]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "/", "2"]], ",", "k"]], "]"]], SuperscriptBox["z", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]], ")"]]]], "\[Equal]", RowBox[List[StyleBox[RowBox[List["ArcCosh", "[", "z", "]"]], Rule[FontWeight, "Plain"]], StyleBox["-", Rule[FontWeight, "Plain"]], RowBox[List[StyleBox[FractionBox["\[ImaginaryI]", RowBox[List["2", " ", SqrtBox["\[Pi]"]]]], Rule[FontWeight, "Plain"]], StyleBox[SuperscriptBox["z", RowBox[List["3", "+", RowBox[List["2", "n"]]]]], Rule[FontWeight, "Plain"]], StyleBox[" ", Rule[FontWeight, "Plain"]], StyleBox[SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]], "2"], Rule[FontWeight, "Plain"]], StyleBox[" ", Rule[FontWeight, "Plain"]], RowBox[List[StyleBox["HypergeometricPFQRegularized", Rule[FontWeight, "Plain"]], StyleBox["[", Rule[FontWeight, "Plain"]], RowBox[List[StyleBox[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]]]], "}"]], Rule[FontWeight, "Plain"]], StyleBox[",", Rule[FontWeight, "Plain"]], StyleBox[RowBox[List["{", RowBox[List[RowBox[List["2", "+", "n"]], ",", RowBox[List[FractionBox["5", "2"], "+", "n"]]]], "}"]], Rule[FontWeight, "Plain"]], StyleBox[",", Rule[FontWeight, "Plain"]], SuperscriptBox[StyleBox["z", Rule[FontWeight, "Plain"]], "2"]]], StyleBox["]", Rule[FontWeight, "Plain"]]]]]]]]]], StyleBox[")", Rule[FontWeight, "Plain"]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]], ")"]], "\[And]", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "<", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msub> <mi> F </mi> <mi> &#8734; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> F </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mi> &#915; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Im </mi> <mo> [ </mo> <mi> z </mi> <mo> ] </mo> </mrow> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arccosh /> <ci> z </ci> </apply> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <infinity /> </apply> <ci> z </ci> </apply> </apply> <apply> <and /> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <arccosh /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#915; </ci> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <list> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </list> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> <apply> <lt /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCosh", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", "z", "]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]], ")"]]]], "\[Equal]", RowBox[List[RowBox[List["ArcCosh", "[", "z", "]"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["3", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "n"]], ",", RowBox[List[FractionBox["5", "2"], "+", "n"]]]], "}"]], ",", SuperscriptBox["z", "2"]]], "]"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"]]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]], ")"]], "&&", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "<", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02