|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.26.19.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sign[ArcCosh[x + I y]] ==
(I ArcTan[x + ((-1 + x)^2 + y^2)^(1/4) ((1 + x)^2 + y^2)^(1/4)
Cos[(1/2) (ArcTan[-1 + x, y] + ArcTan[1 + x, y])],
y + ((-1 + x)^2 + y^2)^(1/4) ((1 + x)^2 + y^2)^(1/4)
Sin[(1/2) (ArcTan[-1 + x, y] + ArcTan[1 + x, y])]] +
Log[Sqrt[(x + ((-1 + x)^2 + y^2)^(1/4) ((1 + x)^2 + y^2)^(1/4)
Cos[(1/2) (ArcTan[-1 + x, y] + ArcTan[1 + x, y])])^2 +
(y + ((-1 + x)^2 + y^2)^(1/4) ((1 + x)^2 + y^2)^(1/4)
Sin[(1/2) (ArcTan[-1 + x, y] + ArcTan[1 + x, y])])^2]])/
Sqrt[ArcTan[x + ((-1 + x)^2 + y^2)^(1/4) ((1 + x)^2 + y^2)^(1/4)
Cos[(1/2) (ArcTan[-1 + x, y] + ArcTan[1 + x, y])],
y + ((-1 + x)^2 + y^2)^(1/4) ((1 + x)^2 + y^2)^(1/4)
Sin[(1/2) (ArcTan[-1 + x, y] + ArcTan[1 + x, y])]]^2 +
Log[Sqrt[(x + ((-1 + x)^2 + y^2)^(1/4) ((1 + x)^2 + y^2)^(1/4)
Cos[(1/2) (ArcTan[-1 + x, y] + ArcTan[1 + x, y])])^2 +
(y + ((-1 + x)^2 + y^2)^(1/4) ((1 + x)^2 + y^2)^(1/4)
Sin[(1/2) (ArcTan[-1 + x, y] + ArcTan[1 + x, y])])^2]]^2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Sign", "[", RowBox[List["ArcCosh", "[", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ",", RowBox[List["y", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["y", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"]]], ")"]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ",", RowBox[List["y", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]]]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["y", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"]]], ")"]]]], "]"]], "2"]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sgn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Sign </ci> <apply> <arccosh /> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <ci> y </ci> </apply> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <ci> y </ci> </apply> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> y </ci> </apply> </apply> </apply> <apply> <ln /> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <ci> y </ci> </apply> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <ci> y </ci> </apply> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <ci> y </ci> </apply> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <ci> y </ci> </apply> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> y </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <ci> y </ci> </apply> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <ci> y </ci> </apply> <apply> <arctan /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sign", "[", RowBox[List["ArcCosh", "[", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "y_"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ",", RowBox[List["y", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["y", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"]]]], "]"]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ",", RowBox[List["y", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]]]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["Log", "[", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["y", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "x"]], ",", "y"]], "]"]], "+", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", "x"]], ",", "y"]], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"]]]], "]"]], "2"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|