Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCosh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCosh[z] > Representations through more general functions > Through Meijer G > Classical cases for the direct function itself





http://functions.wolfram.com/01.26.26.0028.01









  


  










Input Form





ArcCosh[Sqrt[z]] - (Pi Sqrt[-1 + z])/(2 Sqrt[1 - z]) + (Sqrt[z - 1]/Sqrt[1 - z]) Sum[(Pochhammer[1/2, k] z^(k + 1/2))/ ((2 k + 1) k!), {k, 0, n}] == (((-1)^(n - 1) Sqrt[-z] Sqrt[z - 1])/(2 Sqrt[Pi] Sqrt[z] Sqrt[1 - z])) MeijerG[{{1, 1, n + 3/2}, {}}, {{n + 3/2}, {0, 1/2}}, -z] /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["ArcCosh", "[", SqrtBox["z"], "]"]], "-", FractionBox[RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]], "+", RowBox[List[FractionBox[SqrtBox[RowBox[List["z", "-", "1"]]], SqrtBox[RowBox[List["1", "-", "z"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List["k", "+", FractionBox["1", "2"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], SqrtBox[RowBox[List["-", "z"]]], SqrtBox[RowBox[List["z", "-", "1"]]]]], RowBox[List["2", " ", RowBox[List["Sqrt", "[", "Pi", "]"]], SqrtBox["z"], SqrtBox[RowBox[List["1", "-", "z"]]]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", RowBox[List["n", "+", RowBox[List["3", "/", "2"]]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["n", "+", RowBox[List["3", "/", "2"]]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "/", "2"]]]], "}"]]]], "}"]], ",", RowBox[List["-", " ", "z"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mtext> </mtext> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <arccosh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <list /> </list> <list> <list> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </list> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcCosh", "[", SqrtBox["z_"], "]"]], "-", FractionBox[RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z_"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z_"]]]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["z_", "-", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "n_"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k_"]], "]"]], " ", SuperscriptBox["z_", RowBox[List["k_", "+", FractionBox["1", "2"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k_"]], "+", "1"]], ")"]], " ", RowBox[List["k_", "!"]]]]]]]]], SqrtBox[RowBox[List["1", "-", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], " ", SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[RowBox[List["z", "-", "1"]]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", RowBox[List["n", "+", FractionBox["3", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["n", "+", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", SqrtBox["z"], " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21