| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.26.27.1226.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | ArcCosh[Sqrt[z - Sqrt[z^2 - 1]]/Sqrt[2 z]] == 
 ((-Sqrt[z]) Sqrt[-(1/z)] + I Sqrt[(-I) z] Sqrt[I/z] - 
   I Sqrt[-z^2 + 1] Sqrt[1/(-z^2 + 1)]) 
  ((-(1/2)) Sqrt[I/z] Sqrt[1/z] Sqrt[(-I) z] Sqrt[z] Sqrt[1/(1 + z)] 
    Sqrt[1 + z] ArcCsc[z] + (Pi/4) (2 + ((-z + Sqrt[z^2])/Sqrt[z/(1 + z)]) 
      Sqrt[1/z] Sqrt[1/(1 + z)])) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["ArcCosh", "[", FractionBox[SqrtBox[RowBox[List["z", "-", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]], SqrtBox[RowBox[List["2", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["z"]]], SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], "+", RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], SqrtBox[FractionBox["\[ImaginaryI]", "z"]]]], "-", RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", "1"]]], SqrtBox[FractionBox["1", RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", "1"]]]]]]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SqrtBox[FractionBox["\[ImaginaryI]", "z"]], " ", SqrtBox[FractionBox["1", "z"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", SqrtBox["z"], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["ArcCsc", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "z"]], "+", SqrtBox[SuperscriptBox["z", "2"]]]], SqrtBox[FractionBox["z", RowBox[List["1", "+", "z"]]]]], SqrtBox[FractionBox["1", "z"]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]]]]]], " ", ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mi> cosh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <msqrt>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </msqrt>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  </mrow>  </msqrt>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> ⅈ </mi>  <mi> z </mi>  </mfrac>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mi> π </mi>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <msqrt>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> - </mo>  <mi> z </mi>  </mrow>  <msqrt>  <mfrac>  <mi> z </mi>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> ⅈ </mi>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csc </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mtext>   </mtext>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <arccosh />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <arccsc />  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCosh", "[", FractionBox[SqrtBox[RowBox[List["z_", "-", SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]]]]], SqrtBox[RowBox[List["2", " ", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", SqrtBox[FractionBox["\[ImaginaryI]", "z"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", "1"]]], " ", SqrtBox[FractionBox["1", RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", "1"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SqrtBox[FractionBox["\[ImaginaryI]", "z"]], " ", SqrtBox[FractionBox["1", "z"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", SqrtBox["z"], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["ArcCsc", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", SqrtBox[SuperscriptBox["z", "2"]]]], ")"]], " ", SqrtBox[FractionBox["1", "z"]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]]]], SqrtBox[FractionBox["z", RowBox[List["1", "+", "z"]]]]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |