|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.17.19.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sign[ArcCsc[x + I y]] ==
(ArcTan[(1/(x^2 + y^2)) (y + (x^2 + y^2)
((x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)/(x^2 + y^2)^2)^(1/4)
Cos[(1/2) ArcTan[1 + (-x^2 + y^2)/(x^2 + y^2)^2,
(2 x y)/(x^2 + y^2)^2]]), (1/(x^2 + y^2))
(x + (x^2 + y^2) ((x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)/(x^2 + y^2)^2)^
(1/4) Sin[(1/2) ArcTan[1 + (-x^2 + y^2)/(x^2 + y^2)^2,
(2 x y)/(x^2 + y^2)^2]])] -
I Log[Sqrt[(y/(x^2 + y^2) + ((x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)/
(x^2 + y^2)^2)^(1/4) Cos[(1/2) ArcTan[1 + (-x^2 + y^2)/
(x^2 + y^2)^2, (2 x y)/(x^2 + y^2)^2]])^2 +
(x/(x^2 + y^2) + ((x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)/
(x^2 + y^2)^2)^(1/4) Sin[(1/2) ArcTan[1 + (-x^2 + y^2)/
(x^2 + y^2)^2, (2 x y)/(x^2 + y^2)^2]])^2]])/
Sqrt[ArcTan[(1/(x^2 + y^2)) (y + (x^2 + y^2)
((x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)/(x^2 + y^2)^2)^(1/4)
Cos[(1/2) ArcTan[1 + (-x^2 + y^2)/(x^2 + y^2)^2,
(2 x y)/(x^2 + y^2)^2]]), (1/(x^2 + y^2))
(x + (x^2 + y^2) ((x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)/
(x^2 + y^2)^2)^(1/4) Sin[(1/2) ArcTan[1 + (-x^2 + y^2)/
(x^2 + y^2)^2, (2 x y)/(x^2 + y^2)^2]])]^2 +
Log[Sqrt[(y/(x^2 + y^2) + ((x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)/
(x^2 + y^2)^2)^(1/4) Cos[(1/2) ArcTan[1 + (-x^2 + y^2)/
(x^2 + y^2)^2, (2 x y)/(x^2 + y^2)^2]])^2 +
(x/(x^2 + y^2) + ((x^4 + 2 x^2 (-1 + y^2) + (1 + y^2)^2)/
(x^2 + y^2)^2)^(1/4) Sin[(1/2) ArcTan[1 + (-x^2 + y^2)/
(x^2 + y^2)^2, (2 x y)/(x^2 + y^2)^2]])^2]]^2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Sign", "[", RowBox[List["ArcCsc", "[", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["y", "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]]]], ",", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["x", "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]]]]]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["x", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]], "2"]]], ")"]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["y", "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]]]], ",", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["x", "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]]]]]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["x", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]], "2"]]], ")"]]]], "]"]], "2"]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sgn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mfrac> <mi> y </mi> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mfrac> <mi> x </mi> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mfrac> <mi> y </mi> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 4 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mfrac> <mi> x </mi> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Sign </ci> <apply> <arccsc /> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <arctan /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> y </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ln /> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <arctan /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> y </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> x </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sign", "[", RowBox[List["ArcCsc", "[", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "y_"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["ArcTan", "[", RowBox[List[FractionBox[RowBox[List["y", "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], ",", FractionBox[RowBox[List["x", "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["x", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]], "2"]]]], "]"]]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["ArcTan", "[", RowBox[List[FractionBox[RowBox[List["y", "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], ",", FractionBox[RowBox[List["x", "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["Log", "[", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["x", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["x", "4"], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["y", "2"]]], ")"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["x", "2"]]], "+", SuperscriptBox["y", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], ",", FractionBox[RowBox[List["2", " ", "x", " ", "y"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], "2"]]]], "]"]]]], "]"]]]]]], ")"]], "2"]]]], "]"]], "2"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|