Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsc






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsc[z] > Representations through equivalent functions > With related functions > Involving tanh-1 > Involving csc-1(z) > Involving csc-1(z) and tanh-1(1-z/1+z1/2)





http://functions.wolfram.com/01.17.27.1493.01









  


  










Input Form





ArcCsc[z] == (-((2 Sqrt[-((z + 1)/z)] Sqrt[1/(1 - z)] Sqrt[1 - z])/ (Sqrt[1/z] Sqrt[1 + z]))) ArcTanh[Sqrt[(1 - z)/(1 + z)]] + (Pi/2) (2 Sqrt[1/z] Sqrt[z] Sqrt[1/(z + 1)] Sqrt[z + 1] - 1)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCsc", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["z", "+", "1"]], "z"]]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", "z"]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]]]], RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], RowBox[List["ArcTanh", "[", SqrtBox[FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]]], "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"], " ", SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]], " ", SqrtBox[RowBox[List["z", "+", "1"]]]]], "-", "1"]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> z </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccsc /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctanh /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCsc", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["z", "+", "1"]], "z"]]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", "z"]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", SqrtBox[FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]]], "]"]]]], RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"], " ", SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]], " ", SqrtBox[RowBox[List["z", "+", "1"]]]]], "-", "1"]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21