Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSinh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSinh[z] > Transformations > Related transformations > Sums involving the direct function > Involving cot-1(z)





http://functions.wolfram.com/01.25.16.0157.01









  


  










Input Form





ArcSinh[x] + I ArcCot[y] == -((Pi Sqrt[1 + 1/y^2] y Sqrt[(Sqrt[1 + x^2] - I x y)^2/(1 + y^2)])/ (2 I Sqrt[1 + x^2] + 2 x y)) + (Sqrt[1 + 1/y^2] y Sqrt[(Sqrt[1 + x^2] - I x y)^2/(1 + y^2)] ArcSin[(Sqrt[1 + x^2] + (I x)/y)/Sqrt[1 + 1/y^2]])/ (I Sqrt[1 + x^2] + x y) + Pi I (1 + (Sqrt[1 + 1/y^2] y Sqrt[(Sqrt[1 + x^2] - I x y)^2/(1 + y^2)])/ (Sqrt[1 + x^2] - I x y)) Floor[(Arg[x + Sqrt[1 + x^2]] + Arg[(I - 1/y)/Sqrt[1 + 1/y^2]])/(2 Pi)] - Pi I (-1 + (Sqrt[1 + 1/y^2] y Sqrt[(Sqrt[1 + x^2] - I x y)^2/(1 + y^2)])/ (Sqrt[1 + x^2] - I x y)) Floor[-((-Pi + Arg[x + Sqrt[1 + x^2]] + Arg[(I - 1/y)/Sqrt[1 + 1/y^2]])/ (2 Pi))]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSinh", "[", "x", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcCot", "[", "y", "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]], RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]], "+", RowBox[List["2", " ", "x", " ", "y"]]]]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]], " ", RowBox[List["ArcSin", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "x"]], "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]], "+", RowBox[List["x", " ", "y"]]]]], "+", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List["x", "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[Pi]"]], "+", RowBox[List["Arg", "[", RowBox[List["x", "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mtext> </mtext> <mi> y </mi> </mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mi> y </mi> </mfrac> <mo> + </mo> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> y </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arcsinh /> <ci> x </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <arccot /> <ci> y </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <ci> x </ci> <ci> y </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsin /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <ci> y </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <ci> x </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <ci> x </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcSinh", "[", "x_", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcCot", "[", "y_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]], RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]], "+", RowBox[List["2", " ", "x", " ", "y"]]]]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]], " ", RowBox[List["ArcSin", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "x"]], "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]], "+", RowBox[List["x", " ", "y"]]]]], "+", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List["x", "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[Pi]"]], "+", RowBox[List["Arg", "[", RowBox[List["x", "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02