Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSinh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSinh[z] > Representations through equivalent functions > With related functions > Involving cot-1 > Involving sinh-1((z-(1+z2)1/2)1/2/(21/2 (1+z2)1/4)) > Involving sinh-1((z-(1+z2)1/2)1/2/(21/2 (1+z2)1/4)) and cot-1(z)





http://functions.wolfram.com/01.25.27.0800.01









  


  










Input Form





ArcSinh[Sqrt[z - Sqrt[1 + z^2]]/(Sqrt[2] (1 + z^2)^(1/4))] == (1/2) Sqrt[-(1/z)] Sqrt[z] Sqrt[1 - I z] Sqrt[1/(1 - I z)] ArcCot[z] + ((Sqrt[-z^2]/z) (z Sqrt[z^(-2)] - 1) + I Sqrt[1 - I z] Sqrt[1/(1 - I z)] + I Sqrt[1 + I z] Sqrt[1/(1 + I z)] - 2 I) (Pi/4)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List["z", "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", StyleBox["+", "Program"], SuperscriptBox["z", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]], " ", SqrtBox["z"], SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], RowBox[List["ArcCot", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], "z"], RowBox[List["(", RowBox[List[RowBox[List["z", SqrtBox[SuperscriptBox["z", RowBox[List["-", "2"]]]]]], "-", "1"]], ")"]]]], "+", " ", RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]]], "+", RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]]], "-", RowBox[List["2", "\[ImaginaryI]"]]]], ")"]], FractionBox["\[Pi]", "4"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </msqrt> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mtext> </mtext> </mrow> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccot /> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List["z_", "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z_", "2"]]]]]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z_", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]], " ", SqrtBox["z"], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], " ", RowBox[List["ArcCot", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]]]], "-", "1"]], ")"]]]], "z"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]], " ", "\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21