Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSinh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSinh[z] > Representations through equivalent functions > With related functions > Involving sec-1 > Involving sinh-1(2 (1-z2)1/2/z2) > Involving sinh-1(2 (1-z2)1/2/z2) and sec-1(z)





http://functions.wolfram.com/01.25.27.1067.01









  


  










Input Form





ArcSinh[(2 Sqrt[1 - z^2])/z^2] == (z/(2 Sqrt[-(1/z^2)] Sqrt[-z^4 + 3 z^2 - 2])) Sqrt[(1 - z^2)/z^4] Sqrt[z^2 - 2] (Pi ((z^3/(1 - z^2)) Sqrt[(1 - z^2)/z^2] Sqrt[(1 - z^2)/z^4] + Sqrt[1/z^2] z - Sqrt[z/(z + Sqrt[2])] Sqrt[(z + Sqrt[2])/z] Sqrt[1/z] Sqrt[z] + Sqrt[(z - Sqrt[2])/z] Sqrt[z/(z - Sqrt[2])] Sqrt[-(1/z)] Sqrt[-z] - 2) + 4 ArcSec[z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcSinh", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], SuperscriptBox["z", "2"]], "]"]], "\[Equal]", RowBox[List[FractionBox["z", RowBox[List["2", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "4"]]], "+", RowBox[List["3", " ", SuperscriptBox["z", "2"]]], "-", "2"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["z", "3"], RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], SqrtBox[FractionBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "2"]]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]]]], " ", "+", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List[SqrtBox[FractionBox["z", RowBox[List["z", "+", SqrtBox["2"]]]]], " ", SqrtBox[FractionBox[RowBox[List["z", "+", SqrtBox["2"]]], "z"]], " ", SqrtBox[FractionBox["1", "z"]], SqrtBox["z"]]], "+", RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "-", SqrtBox["2"]]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "-", SqrtBox["2"]]]]], SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]], " ", SqrtBox[RowBox[List["-", "z"]]]]], "-", "2"]], ")"]]]], "+", RowBox[List["4", RowBox[List["ArcSec", "[", "z", "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 2 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msqrt> <mn> 2 </mn> </msqrt> <mi> z </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> - </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </msqrt> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsinh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsec /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSinh", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z_", "2"]]]]]], SuperscriptBox["z_", "2"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["z", " ", SqrtBox[FractionBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "3"], " ", SqrtBox[FractionBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "2"]]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]]]], RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], "+", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List[SqrtBox[FractionBox["z", RowBox[List["z", "+", SqrtBox["2"]]]]], " ", SqrtBox[FractionBox[RowBox[List["z", "+", SqrtBox["2"]]], "z"]], " ", SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"]]], "+", RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "-", SqrtBox["2"]]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "-", SqrtBox["2"]]]]], " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]], " ", SqrtBox[RowBox[List["-", "z"]]]]], "-", "2"]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["ArcSec", "[", "z", "]"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "4"]]], "+", RowBox[List["3", " ", SuperscriptBox["z", "2"]]], "-", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21