|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.25.27.1317.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcSinh[(2 z)/(1 - z^2)] == (-((Pi Sqrt[-z^2])/(2 z)))
(1 - ((1 - I z)/(1 + I z)) Sqrt[((1 + I z)/(-1 + I z))^2]) +
((2 (1 - I z))/(1 + I z)) Sqrt[((1 + I z)/(-1 + I z))^2] ArcTanh[z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ArcSinh", "[", FractionBox[RowBox[List["2", " ", "z"]], RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", " ", "z"]]]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]], RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], ")"]], "2"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]], ")"]], " "]], RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], ")"]], "2"]], " ", RowBox[List["ArcTanh", "[", "z", "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctanh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSinh", "[", FractionBox[RowBox[List["2", " ", "z_"]], RowBox[List["1", "-", SuperscriptBox["z_", "2"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], ")"]], "2"]]]], RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]], ")"]]]], RowBox[List["2", " ", "z"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]], ")"]]]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], ")"]], "2"]], " ", RowBox[List["ArcTanh", "[", "z", "]"]]]], RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|