ArcSinh
Elementary Functions
ArcSinh[
z
]
Representations through equivalent functions
With related functions
Involving coth
-1
Involving sinh
-1
(
z
) (84 formulas)
Involving sinh
-1
(
z
) and coth
-1
((
z
2
+1)
1/2
/
z
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
((
z
2
+1)
1/2
/(
z
2
)
1/2
) (5 formulas)
Involving sinh
-1
(
z
) and coth
-1
((-
z
2
-1)
1/2
/(-
z
2
)
1/2
) (5 formulas)
Involving sinh
-1
(
z
) and coth
-1
(
z
2
+1/
z
2
1/2
) (5 formulas)
Involving sinh
-1
(
z
) and coth
-1
(
z
/(1+
z
2
)
1/2
) (3 formulas)
Involving sinh
-1
(
z
) and coth
-1
((
z
2
)
1/2
/(
z
2
+1)
1/2
) (5 formulas)
Involving sinh
-1
(
z
) and coth
-1
((-
z
2
)
1/2
/(-1-
z
2
)
1/2
) (5 formulas)
Involving sinh
-1
(
z
) and coth
-1
(
z
2
/
z
2
+1
1/2
) (5 formulas)
Involving sinh
-1
(
z
) and coth
-1
(2
z
(1+
z
2
)
1/2
/1+2
z
2
) (5 formulas)
Involving sinh
-1
(
z
) and coth
-1
(1+2
z
2
/2
z
(
z
2
+1)
1/2
) (2 formulas)
Involving sinh
-1
(
z
) and coth
-1
((
i
z
+1)
1/2
/(
i
z
-1)
1/2
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
((-1-
i
z
)
1/2
/(1-
i
z
)
1/2
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
((
z
-
i
)
1/2
/(
z
+
i
)
1/2
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
((
i
-
z
)
1/2
/(-
i
-
z
)
1/2
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
(
z
-
i
/
z
+
i
1/2
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
((
i
z
-1)
1/2
/(
i
z
+1)
1/2
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
((1-
i
z
)
1/2
/(-1-
i
z
)
1/2
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
((
z
+
i
)
1/2
/(
z
-
i
)
1/2
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
((-
i
-
z
)
1/2
/(
i
-
z
)
1/2
) (4 formulas)
Involving sinh
-1
(
z
) and coth
-1
(
z
+
i
/
z
-
i
1/2
) (4 formulas)