Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSinh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSinh[z] > Representations through equivalent functions > With related functions > Involving coth-1 > Involving sinh-1(((z-(z2-1)1/2)/(2(z2-1)1/2))1/2) > Involving sinh-1(((z-(z2-1)1/2)/(2(z2-1)1/2))1/2) and coth-1(1/z)





http://functions.wolfram.com/01.25.27.1732.01









  


  










Input Form





ArcSinh[Sqrt[(z - Sqrt[z^2 - 1])/(2 Sqrt[z^2 - 1])]] == (-(1/2)) ArcCoth[1/z] + (Pi I)/4 /; Inequality[-Pi, Less, Arg[z], LessEqual, -(Pi/2)] || (Element[z, Reals] && -1 < z < 0) || (Element[I z, Reals] && I z < 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSinh", "[", SqrtBox[FractionBox[RowBox[List["z", "-", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]], RowBox[List["2", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["ArcCoth", "[", FractionBox["1", "z"], "]"]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "4"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "\[Pi]"]], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", RowBox[List["-", FractionBox["\[Pi]", "2"]]]]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["z", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "0"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "<", "0"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#960; </mi> </mrow> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8712; </mo> <mi> &#8477; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &lt; </mo> <mi> z </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> &#8712; </mo> <mi> &#8477; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arcsinh /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccoth /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <or /> <apply> <ci> Inequality </ci> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <lt /> <apply> <arg /> <ci> z </ci> </apply> <leq /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> z </ci> <ci> &#8477; </ci> </apply> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <ci> &#8477; </ci> </apply> <apply> <lt /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSinh", "[", SqrtBox[FractionBox[RowBox[List["z_", "-", SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["ArcCoth", "[", FractionBox["1", "z"], "]"]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "4"]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "\[Pi]"]], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", RowBox[List["-", FractionBox["\[Pi]", "2"]]]]], "||", RowBox[List["(", RowBox[List[RowBox[List["z", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "0"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "<", "0"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21