Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSinh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSinh[z] > Representations through equivalent functions > With related functions > Involving sech-1 > Involving sinh-1(2 (1-z2)1/2/z2) > Involving sinh-1(2 (1-z2)1/2/z2) and sech-1(z)





http://functions.wolfram.com/01.25.27.1988.01









  


  










Input Form





ArcSinh[(2 Sqrt[1 - z^2])/z^2] == (-((2 z Sqrt[-1 + z^2])/Sqrt[z^2 - z^4])) (Pi/2 - (Sqrt[1 - 1/z]/Sqrt[1/z - 1]) ArcSech[z]) /; Abs[z] >= Sqrt[2] || Pi/4 <= Abs[Arg[z]] <= (3 Pi)/4










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSinh", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], SuperscriptBox["z", "2"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], " "]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "4"]]]]]]], RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["1", "/", "z"]]]]], SqrtBox[RowBox[List[RowBox[List["1", "/", "z"]], "-", "1"]]]], RowBox[List["ArcSech", "[", "z", "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[GreaterEqual]", SqrtBox["2"]]], "\[Or]", RowBox[List[FractionBox["\[Pi]", "4"], "\[LessEqual]", RowBox[List["Abs", "[", RowBox[List["Arg", "[", "z", "]"]], "]"]], "\[LessEqual]", FractionBox[RowBox[List["3", "\[Pi]"]], "4"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8805; </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> &#8744; </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 4 </mn> </mfrac> <mo> &#8804; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8804; </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arcsinh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsech /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <or /> <apply> <geq /> <apply> <abs /> <ci> z </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <leq /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <abs /> <apply> <arg /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSinh", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z_", "2"]]]]]], SuperscriptBox["z_", "2"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", "z"]]]], " ", RowBox[List["ArcSech", "[", "z", "]"]]]], SqrtBox[RowBox[List[FractionBox["1", "z"], "-", "1"]]]]]], ")"]]]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "4"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[GreaterEqual]", SqrtBox["2"]]], "||", RowBox[List[FractionBox["\[Pi]", "4"], "\[LessEqual]", RowBox[List["Abs", "[", RowBox[List["Arg", "[", "z", "]"]], "]"]], "\[LessEqual]", FractionBox[RowBox[List["3", " ", "\[Pi]"]], "4"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21