Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ArcTan






Mathematica Notation

Traditional Notation









Elementary Functions > ArcTan[x,y] > Complex characteristics > Absolute value





http://functions.wolfram.com/01.15.19.0003.01









  


  










Input Form





Abs[ArcTan[x, y]] == Sqrt[ ArcTan[(Cos[(1/2) ArcTan[-Im[x]^2 - Im[y]^2 + Re[x]^2 + Re[y]^2, 2 Im[x] Re[x] + 2 Im[y] Re[y]]] (-Im[y] + Re[x]))/ ((2 Im[x] Re[x] + 2 Im[y] Re[y])^2 + (-Im[x]^2 - Im[y]^2 + Re[x]^2 + Re[y]^2)^2)^(1/4) + ((Im[x] + Re[y]) Sin[(1/2) ArcTan[-Im[x]^2 - Im[y]^2 + Re[x]^2 + Re[y]^2, 2 Im[x] Re[x] + 2 Im[y] Re[y]]])/ ((2 Im[x] Re[x] + 2 Im[y] Re[y])^2 + (-Im[x]^2 - Im[y]^2 + Re[x]^2 + Re[y]^2)^2)^(1/4), (Cos[(1/2) ArcTan[-Im[x]^2 - Im[y]^2 + Re[x]^2 + Re[y]^2, 2 Im[x] Re[x] + 2 Im[y] Re[y]]] (Im[x] + Re[y]))/ ((2 Im[x] Re[x] + 2 Im[y] Re[y])^2 + (-Im[x]^2 - Im[y]^2 + Re[x]^2 + Re[y]^2)^2)^(1/4) - ((-Im[y] + Re[x]) Sin[(1/2) ArcTan[-Im[x]^2 - Im[y]^2 + Re[x]^2 + Re[y]^2, 2 Im[x] Re[x] + 2 Im[y] Re[y]]])/ ((2 Im[x] Re[x] + 2 Im[y] Re[y])^2 + (-Im[x]^2 - Im[y]^2 + Re[x]^2 + Re[y]^2)^2)^(1/4)]^2 + Log[Sqrt[(-Im[y] + Re[x])^2 + (Im[x] + Re[y])^2]/ ((2 Im[x] Re[x] + 2 Im[y] Re[y])^2 + (-Im[x]^2 - Im[y]^2 + Re[x]^2 + Re[y]^2)^2)^(1/4)]^2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Abs", "[", RowBox[List["ArcTan", "[", RowBox[List["x", ",", "y"]], "]"]], "]"]], "\[Equal]", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]]]], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Im", "[", "y", "]"]]]], "+", RowBox[List["Re", "[", "x", "]"]]]], ")"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Im", "[", "x", "]"]], "+", RowBox[List["Re", "[", "y", "]"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]]]], "]"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]]], ",", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]]]], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Im", "[", "x", "]"]], "+", RowBox[List["Re", "[", "y", "]"]]]], ")"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Im", "[", "y", "]"]]]], "+", RowBox[List["Re", "[", "x", "]"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]]]], "]"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]]]]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["Log", "[", FractionBox[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Im", "[", "y", "]"]]]], "+", RowBox[List["Re", "[", "x", "]"]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Im", "[", "x", "]"]], "+", RowBox[List["Re", "[", "y", "]"]]]], ")"]], "2"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]], "]"]], "2"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> x </mi> <mo> , </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mrow> <mo> &#8730; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msqrt> <mroot> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <abs /> <apply> <arctan /> <ci> x </ci> <ci> y </ci> </apply> </apply> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <real /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <real /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> y </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> y </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <real /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <real /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <real /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <real /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> y </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <real /> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> y </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <real /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <real /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <real /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <real /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> y </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> y </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <real /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <real /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <real /> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <ci> y </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <real /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <real /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> y </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> y </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <real /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <real /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <real /> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> x </ci> </apply> <apply> <real /> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> y </ci> </apply> <apply> <real /> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <real /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <real /> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Abs", "[", RowBox[List["ArcTan", "[", RowBox[List["x_", ",", "y_"]], "]"]], "]"]], "]"]], "\[RuleDelayed]", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]]]], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Im", "[", "y", "]"]]]], "+", RowBox[List["Re", "[", "x", "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Im", "[", "x", "]"]], "+", RowBox[List["Re", "[", "y", "]"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]]]], "]"]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]], ",", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]]]], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Im", "[", "x", "]"]], "+", RowBox[List["Re", "[", "y", "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Im", "[", "y", "]"]]]], "+", RowBox[List["Re", "[", "x", "]"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]]]], "]"]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]]]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["Log", "[", FractionBox[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Im", "[", "y", "]"]]]], "+", RowBox[List["Re", "[", "x", "]"]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Im", "[", "x", "]"]], "+", RowBox[List["Re", "[", "y", "]"]]]], ")"]], "2"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Im", "[", "x", "]"]], " ", RowBox[List["Re", "[", "x", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Im", "[", "y", "]"]], " ", RowBox[List["Re", "[", "y", "]"]]]]]], ")"]], "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "x", "]"]], "2"]]], "-", SuperscriptBox[RowBox[List["Im", "[", "y", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "x", "]"]], "2"], "+", SuperscriptBox[RowBox[List["Re", "[", "y", "]"]], "2"]]], ")"]], "2"]]], ")"]], RowBox[List["1", "/", "4"]]]], "]"]], "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29