Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Differential equations > Ordinary nonlinear differential equations





http://functions.wolfram.com/01.20.13.0007.01









  


  










Input Form





Derivative[1][w][z] + Sqrt[a w[z]^2 + b w[z] + c] == 0 /; w[z] == -(b/(2 a)) + (Sqrt[b^2 - 4 a c]/(2 a)) (I Sqrt[Subscript[c, 1]] Sinh[Sqrt[-a] z] - Sqrt[1 - Subscript[c, 1]] Cosh[Sqrt[-a] z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "+", SqrtBox[RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["w", "[", "z", "]"]], "2"]]], "+", RowBox[List["b", " ", RowBox[List["w", "[", "z", "]"]]]], "+", "c"]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["b", RowBox[List["2", " ", "a"]]]]], "+", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], " "]], RowBox[List["2", " ", "a"]]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[SubscriptBox["c", "1"]], " ", RowBox[List["Sinh", "[", RowBox[List[SqrtBox[RowBox[List["-", "a"]]], " ", "z"]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "-", SubscriptBox["c", "1"]]]], " ", RowBox[List["Cosh", "[", RowBox[List[SqrtBox[RowBox[List["-", "a"]]], " ", "z"]], "]"]]]]]], ")"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> c </mi> </mrow> </msqrt> </mrow> <mo> &#10869; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <msub> <mi> c </mi> <mn> 1 </mn> </msub> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> c </mi> <mn> 1 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "+", SqrtBox[RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["w", "[", "z_", "]"]], "2"]]], "+", RowBox[List["b_", " ", RowBox[List["w", "[", "z_", "]"]]]], "+", "c_"]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["b", RowBox[List["2", " ", "a"]]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[SubscriptBox["c", "1"]], " ", RowBox[List["Sinh", "[", RowBox[List[SqrtBox[RowBox[List["-", "a"]]], " ", "z"]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "-", SubscriptBox["c", "1"]]]], " ", RowBox[List["Cosh", "[", RowBox[List[SqrtBox[RowBox[List["-", "a"]]], " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["2", " ", "a"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29