|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.0049.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^(n + 1/2) Cosh[a z], z] ==
(((-1)^n a^(-1 - n) Sqrt[z])/(2 Sqrt[(-a^2) z^2]))
(Gamma[3/2 + n] (Sqrt[a z] Erfc[Sqrt[(-a) z]] - (-1)^n Sqrt[(-a) z]
Erfc[Sqrt[a z]]) + Sqrt[a z] E^(a z)
(Sum[((-a) z)^(1/2 + k)/Pochhammer[3/2 + n, k - n], {k, 0, n}] -
Sum[((-a) z)^(1/2 + k)/Pochhammer[3/2 + n, k - n], {k, 1 + n, -1}]) -
((-1)^n Sqrt[(-a) z] (Sum[(a z)^(1/2 + k)/Pochhammer[3/2 + n, k - n],
{k, 0, n}] - Sum[(a z)^(1/2 + k)/Pochhammer[3/2 + n, k - n],
{k, 1 + n, -1}]))/E^(a z)) /; Element[n, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["n", "+", FractionBox["1", "2"]]]], " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["a", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SqrtBox["z"], " "]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", " ", "z"]]], " ", RowBox[List["Erfc", "[", SqrtBox[RowBox[List[RowBox[List["-", "a"]], " ", "z"]]], "]"]]]], " ", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], " ", "z"]]], " ", RowBox[List["Erfc", "[", SqrtBox[RowBox[List["a", " ", "z"]]], "]"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox[RowBox[List["a", " ", "z"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["k", "-", "n"]]]], "]"]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["1", "+", "n"]]]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["k", "-", "n"]]]], "]"]]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], " ", "z"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["k", "-", "n"]]]], "]"]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["1", "+", "n"]]]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["k", "-", "n"]]]], "]"]]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfc </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfc </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["n", "+", FractionBox["3", "2"]]], ")"]], RowBox[List["k", "-", "n"]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["n", "+", FractionBox["3", "2"]]], ")"]], RowBox[List["k", "-", "n"]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["n", "+", FractionBox["3", "2"]]], ")"]], RowBox[List["k", "-", "n"]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["n", "+", FractionBox["3", "2"]]], ")"]], RowBox[List["k", "-", "n"]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfc </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfc </ci> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <cn type='integer'> -1 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <cn type='integer'> -1 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["n_", "+", FractionBox["1", "2"]]]], " ", RowBox[List["Cosh", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["a", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SqrtBox["z"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", " ", "z"]]], " ", RowBox[List["Erfc", "[", SqrtBox[RowBox[List[RowBox[List["-", "a"]], " ", "z"]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], " ", "z"]]], " ", RowBox[List["Erfc", "[", SqrtBox[RowBox[List["a", " ", "z"]]], "]"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox[RowBox[List["a", " ", "z"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["k", "-", "n"]]]], "]"]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["1", "+", "n"]]]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["k", "-", "n"]]]], "]"]]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], " ", "z"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["k", "-", "n"]]]], "]"]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["1", "+", "n"]]]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["k", "-", "n"]]]], "]"]]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]]]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|