Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving rational functions > Involving (a z+b)-n





http://functions.wolfram.com/01.20.21.0147.01









  


  










Input Form





Integrate[(z^2 Cosh[c z])/(a z + b)^2, z] == (1/(a^4 c (b + a z))) ((-b) c (b + a z) CoshIntegral[c (b/a + z)] (2 a Cosh[(b c)/a] + b c Sinh[(b c)/a]) + a ((-b^2) c Cosh[c z] + a (b + a z) Sinh[c z]) + b c (b + a z) (b c Cosh[(b c)/a] + 2 a Sinh[(b c)/a]) SinhIntegral[c (b/a + z)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", "z"]], "+", "b"]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["a", "4"], " ", "c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", RowBox[List["CoshIntegral", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], "+", RowBox[List["b", " ", "c", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", "c", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List["b", " ", "c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "c", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Chi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> CoshIntegral </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <cosh /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <cosh /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", "z_"]], "+", "b_"]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", RowBox[List["CoshIntegral", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], "+", RowBox[List["b", " ", "c", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", "c", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List["b", " ", "c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "c", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["a", "4"], " ", "c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18