![](/common/images/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
http://functions.wolfram.com/01.20.21.0160.01
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Integrate[(a z + b)^(3/2) Cosh[c z], z] ==
(1/(2 a)) (((b + a z)^(5/2) (-((1/(-((c (b + a z))/a))^(5/2))
(E^(c (b/a + z)) (-((c (b + a z))/a))^(3/2) +
(3/4) (Sqrt[Pi] + 2 E^(c (b/a + z)) Sqrt[-((c (b + a z))/a)] -
Sqrt[Pi] Erf[Sqrt[-((c (b + a z))/a)]]))) -
(1/((c (b + a z))/a)^(5/2)) (E^((2 b c)/a)
(((c (b + a z))/a)^(3/2)/E^(c (b/a + z)) +
(3/2) (Sqrt[(c (b + a z))/a]/E^(c (b/a + z)) - (1/2) Sqrt[Pi]
(-1 + Erf[Sqrt[(c (b + a z))/a]]))))))/E^((b c)/a))
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", "z"]], "+", "b"]], ")"]], RowBox[List["3", "/", "2"]]], RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", "a"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["b", " ", "c"]], "a"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]], ")"]], RowBox[List["5", "/", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]], ")"]], RowBox[List["3", "/", "2"]]]]], "+", RowBox[List[FractionBox["3", "4"], " ", RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"], ")"]], RowBox[List["5", "/", "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "b", " ", "c"]], "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"], ")"]], RowBox[List["3", "/", "2"]]]]], "+", RowBox[List[FractionBox["3", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Erf", "[", SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> π </mi> </msqrt> </mrow> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </mrow> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> + </mo> <msqrt> <mi> π </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Erf </ci> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Erf </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/clear.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| | ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", "z_"]], "+", "b_"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["b", " ", "c"]], "a"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]], ")"]], RowBox[List["3", "/", "2"]]]]], "+", RowBox[List[FractionBox["3", "4"], " ", RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]]], "]"]]]]]], ")"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]], ")"]], RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "b", " ", "c"]], "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"], ")"]], RowBox[List["3", "/", "2"]]]]], "+", RowBox[List[FractionBox["3", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Erf", "[", SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"], ")"]], RowBox[List["5", "/", "2"]]]]]], ")"]]]], RowBox[List["2", " ", "a"]]]]]]] |
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Date Added to functions.wolfram.com (modification date)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/common/images/spacer.gif) |
|
|