| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.0238.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[a^(b Sqrt[z] + d z + e) Cosh[c Sqrt[z]], z] == 
 (1/(4 (d Log[a])^(3/2))) ((a^(-(b^2/(4 d)) + e) 
    (2 a^((b + 2 d Sqrt[z])^2/(4 d)) E^((c (c + 2 b Log[a]))/(4 d Log[a])) 
      (1 + E^(2 c Sqrt[z])) Sqrt[d Log[a]] + E^(c (b/d + Sqrt[z])) Sqrt[Pi] 
      Erfi[(-c + (b + 2 d Sqrt[z]) Log[a])/(2 Sqrt[d Log[a]])] 
      (c - b Log[a]) - E^(c Sqrt[z]) Sqrt[Pi] 
      Erfi[(c + (b + 2 d Sqrt[z]) Log[a])/(2 Sqrt[d Log[a]])] 
      (c + b Log[a])))/E^((c^2 + 2 (b c + 2 c d Sqrt[z]) Log[a])/
     (4 d Log[a]))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]]], RowBox[List["Cosh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", "d"]]]]], "+", "e"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "c"]], "+", RowBox[List["2", " ", "c", " ", "d", " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["4", " ", "d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "d"]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], RowBox[List["4", " ", "d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", SqrtBox["z"]]]]]], ")"]], " ", SqrtBox[RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "d"], "+", SqrtBox["z"]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", SqrtBox["z"]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <msup>  <mi> a </mi>  <mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> a </mi>  <mrow>  <mi> e </mi>  <mo> - </mo>  <mfrac>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  </mfrac>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> b </mi>  <mi> d </mi>  </mfrac>  <mo> + </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> b </ci>  </apply>  <ci> e </ci>  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <cosh />  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <times />  <ci> d </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <apply>  <plus />  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> d </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> d </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> c </ci>  </apply>  </apply>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> d </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> d </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> d </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> d </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> d </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> d </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <ci> d </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> d </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <ci> d </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["a_", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]]], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", SqrtBox["z_"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", "d"]]]]], "+", "e"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "c"]], "+", RowBox[List["2", " ", "c", " ", "d", " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["4", " ", "d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "d"]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], RowBox[List["4", " ", "d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", SqrtBox["z"]]]]]], ")"]], " ", SqrtBox[RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "d"], "+", SqrtBox["z"]]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", SqrtBox["z"]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |