| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.0264.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[a^(b z^2 + d z + e) Cosh[c z^2 + g], z] == 
 (a^(e + (b d^2 Log[a]^2)/(2 c^2 - 2 b^2 Log[a]^2)) Sqrt[Pi] 
   ((-E^((d^2 Log[a]^2)/(4 c + 4 b Log[a]))) 
     Erfi[(-2 c z + (d + 2 b z) Log[a])/(2 Sqrt[-c + b Log[a]])] 
     Sqrt[-c + b Log[a]] (c + b Log[a]) (Cosh[g] - Sinh[g]) + 
    E^((d^2 Log[a]^2)/(-4 c + 4 b Log[a])) 
     Erfi[(2 c z + (d + 2 b z) Log[a])/(2 Sqrt[c + b Log[a]])] (c - b Log[a]) 
     Sqrt[c + b Log[a]] (Cosh[g] + Sinh[g])))/(4 (c^2 - b^2 Log[a]^2)) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["e", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", SuperscriptBox["c", "2"]]], "-", RowBox[List["2", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["d", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List[RowBox[List["4", " ", "c"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "-", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["d", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "+", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <msup>  <mi> a </mi>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mi> e </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mi> g </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> a </mi>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> d </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> e </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mfrac>  <mrow>  <msup>  <mi> d </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> g </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> g </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mfrac>  <mrow>  <msup>  <mi> d </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> c </mi>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> c </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> a </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> g </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> g </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  <ci> e </ci>  </apply>  </apply>  <apply>  <cosh />  <apply>  <plus />  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> g </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ln />  <ci> a </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ln />  <ci> a </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ln />  <ci> a </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> e </ci>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> d </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ln />  <ci> a </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <cosh />  <ci> g </ci>  </apply>  <apply>  <sinh />  <ci> g </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> d </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ln />  <ci> a </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <ln />  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <cosh />  <ci> g </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <sinh />  <ci> g </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["a_", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["a", RowBox[List["e", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", SuperscriptBox["c", "2"]]], "-", RowBox[List["2", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["d", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List[RowBox[List["4", " ", "c"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "-", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["d", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "+", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |