Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Arguments involving polynomials or algebraic functions and factors involving exponential functions > Involving exp > Involving ab zr+e cosh(c zr+f z+g)





http://functions.wolfram.com/01.20.21.0489.01









  


  










Input Form





Integrate[a^(b z^2 + e) Cosh[c z^2 + f z + g], z] == (a^(e + (b f^2)/(2 (c^2 - b^2 Log[a]^2))) Sqrt[Pi] ((-E^(f^2/(4 c + 4 b Log[a]))) Erfi[(-f - 2 c z + 2 b z Log[a])/ (2 Sqrt[-c + b Log[a]])] Sqrt[-c + b Log[a]] (c + b Log[a]) (Cosh[g] - Sinh[g]) + E^(f^2/(-4 c + 4 b Log[a])) Erfi[(f + 2 c z + 2 b z Log[a])/(2 Sqrt[c + b Log[a]])] (c - b Log[a]) Sqrt[c + b Log[a]] (Cosh[g] + Sinh[g])))/(4 (c^2 - b^2 Log[a]^2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", "e"]]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["e", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["f", "2"]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["f", "2"], RowBox[List[RowBox[List["4", " ", "c"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List["2", " ", "b", " ", "z", " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "-", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["f", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List["2", " ", "b", " ", "z", " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "+", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> a </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> f </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> g </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> g </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> c </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> c </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> g </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> g </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> e </ci> </apply> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> e </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <cosh /> <ci> g </ci> </apply> <apply> <sinh /> <ci> g </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <cosh /> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <ci> g </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["a_", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", "e_"]]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["a", RowBox[List["e", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["f", "2"]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["f", "2"], RowBox[List[RowBox[List["4", " ", "c"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List["2", " ", "b", " ", "z", " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "-", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["f", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List["2", " ", "b", " ", "z", " ", RowBox[List["Log", "[", "a", "]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "+", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18