|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.0495.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[a^(b Sqrt[z] + d z) Cosh[c Sqrt[z] + f z + g], z] ==
-((Sqrt[Pi] Erfi[(-c + b Log[a] + 2 Sqrt[z] (-f + d Log[a]))/
(2 Sqrt[-f + d Log[a]])] (-c + b Log[a]))/
E^((c^2 - 2 b c Log[a] + b^2 Log[a]^2 + 4 (-f + d Log[a]) g)/
(4 (-f + d Log[a]))))/(4 (-f + d Log[a])^(3/2)) +
(a^(b Sqrt[z] + d z) E^(-g - c Sqrt[z] - f z))/(2 (-f + d Log[a])) -
(Sqrt[Pi] Erfi[(c + b Log[a] + 2 Sqrt[z] (f + d Log[a]))/
(2 Sqrt[f + d Log[a]])] (c + b Log[a]))/
E^((c^2 + 2 b c Log[a] + b^2 Log[a]^2 - 4 (f + d Log[a]) g)/
(4 (f + d Log[a])))/(4 (f + d Log[a])^(3/2)) +
(a^(b Sqrt[z] + d z) E^(g + c Sqrt[z] + f z))/(2 (f + d Log[a]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["2", " ", "b", " ", "c", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", "g"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "g"]], "-", RowBox[List["c", " ", SqrtBox["z"]]], "-", RowBox[List["f", " ", "z"]]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["2", " ", "b", " ", "c", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", "g"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]], SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> a </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> g </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> g </mi> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> f </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> g </mi> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> <ci> c </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <ci> g </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> <ci> c </ci> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <ci> g </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["a_", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]]]]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["2", " ", "b", " ", "c", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", "g"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "g"]], "-", RowBox[List["c", " ", SqrtBox["z"]]], "-", RowBox[List["f", " ", "z"]]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["2", " ", "b", " ", "c", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], " ", "g"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|