Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving trigonometric functions > Involving powers of sin > Involving sinm(b zr+d z) cosh(f z+g)





http://functions.wolfram.com/01.20.21.0623.01









  


  










Input Form





Integrate[Sin[b Sqrt[z] + d z]^m Cosh[f z + g], z] == (Binomial[m, m/2] (1 - Mod[m, 2]) Sinh[g + f z])/(2^m f) + 2^(-1 - m) Sum[(-1)^(k + m) Binomial[m, k] (((-2 b k + b m) Sqrt[2 Pi] Cos[I g + (2 b k - b m)^2/ (4 ((-I) f + 2 d k - d m)) + (m Pi)/2] FresnelC[(2 b k - b m + 2 ((-I) f + 2 d k - d m) Sqrt[z])/ (Sqrt[(-I) f + 2 d k - d m] Sqrt[2 Pi])] - (2 b k - b m) Sqrt[2 Pi] FresnelS[(2 b k - b m + 2 ((-I) f + 2 d k - d m) Sqrt[z])/(Sqrt[(-I) f + 2 d k - d m] Sqrt[2 Pi])] Sin[I g + (2 b k - b m)^2/(4 ((-I) f + 2 d k - d m)) + (m Pi)/2] - 2 I Sqrt[(-I) f + 2 d k - d m] Sinh[g - (I m Pi)/2 + I (2 b k - b m) Sqrt[z] + I ((-I) f + 2 d k - d m) z])/((-I) f + 2 d k - d m)^(3/2) + ((-2 b k + b m) Sqrt[2 Pi] Cosh[g + (I (2 b k - b m)^2)/ (4 (I f + 2 d k - d m)) + (I m Pi)/2] FresnelC[(2 b k - b m + 2 (I f + 2 d k - d m) Sqrt[z])/ (Sqrt[I f + 2 d k - d m] Sqrt[2 Pi])] + I (2 b k - b m) Sqrt[2 Pi] FresnelS[(2 b k - b m + 2 (I f + 2 d k - d m) Sqrt[z])/ (Sqrt[I f + 2 d k - d m] Sqrt[2 Pi])] Sinh[g + (I (2 b k - b m)^2)/(4 (I f + 2 d k - d m)) + (I m Pi)/2] + 2 I Sqrt[I f + 2 d k - d m] Sinh[g + (I m Pi)/2 - I (2 b k - b m) Sqrt[z] - I (I f + 2 d k - d m) z])/(I f + 2 d k - d m)^(3/2)), {k, 0, Floor[(1/2) (-1 + m)]}] /; Element[m, Integers] && m > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]], "]"]], "m"], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["g", "+", RowBox[List["f", " ", "z"]]]], "]"]]]], "f"], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "+", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "k"]], "+", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "g"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]]]]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "g"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]]]]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", RowBox[List["Sinh", "[", RowBox[List["g", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", "z"]]]], "]"]]]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "k"]], "+", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["Cosh", "[", RowBox[List["g", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["g", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", RowBox[List["Sinh", "[", RowBox[List["g", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", "z"]]]], "]"]]]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <msup> <mi> sin </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> f </mi> </mfrac> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> g </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> g </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mi> g </mi> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mi> g </mi> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> g </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <sin /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <cosh /> <apply> <plus /> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> f </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <ci> m </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> g </ci> </apply> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> g </ci> </apply> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sinh /> <apply> <plus /> <ci> g </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> g </ci> <apply> <times /> <imaginaryi /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> g </ci> <apply> <times /> <imaginaryi /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sinh /> <apply> <plus /> <ci> g </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]]]], "]"]], "m_"], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["g", "+", RowBox[List["f", " ", "z"]]]], "]"]]]], "f"], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "+", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "k"]], "+", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "g"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]]]]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "g"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]]]]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", RowBox[List["Sinh", "[", RowBox[List["g", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", "z"]]]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "k"]], "+", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["Cosh", "[", RowBox[List["g", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["g", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]]], " ", RowBox[List["Sinh", "[", RowBox[List["g", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], " ", "z"]]]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18