| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.0691.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Sin[e z] Cosh[c z] (a + b Sin[d z])^\[Beta], z] == 
 ((-(1/4)) I (-((E^((c - I e) z) AppellF1[(I (c - I e))/d - \[Beta], 
        -\[Beta], -\[Beta], 1 + (I (c - I e))/d - \[Beta], 
        -((I b)/(E^(I d z) (a + Sqrt[a^2 - b^2]))), 
        -((I b)/(E^(I d z) (a - Sqrt[a^2 - b^2])))])/
      (c - I e + I d \[Beta])) + 
    (E^((-c + I e) z) AppellF1[(I (-c + I e))/d - \[Beta], -\[Beta], 
       -\[Beta], 1 + (I (-c + I e))/d - \[Beta], 
       -((I b)/(E^(I d z) (a + Sqrt[a^2 - b^2]))), 
       -((I b)/(E^(I d z) (a - Sqrt[a^2 - b^2])))])/
     (-c + I e + I d \[Beta]) + 
    (E^((c + I e) z) AppellF1[(I (c + I e))/d - \[Beta], -\[Beta], -\[Beta], 
       1 + (I (c + I e))/d - \[Beta], 
       -((I b)/(E^(I d z) (a + Sqrt[a^2 - b^2]))), 
       -((I b)/(E^(I d z) (a - Sqrt[a^2 - b^2])))])/(c + I e + I d \[Beta]) + 
    (E^((-c - I e) z) AppellF1[-((I (c + I e - I d \[Beta]))/d), -\[Beta], 
       -\[Beta], -((-d + I (c + I e) + d \[Beta])/d), 
       -((I b)/(E^(I d z) (a + Sqrt[a^2 - b^2]))), 
       -((I b)/(E^(I d z) (a - Sqrt[a^2 - b^2])))])/(c + I e - I d \[Beta])) 
   (a + b Sin[d z])^\[Beta])/((1 - (I b)/(E^(I d z) (-a + Sqrt[a^2 - b^2])))^
    \[Beta] (1 + (I b)/(E^(I d z) (a + Sqrt[a^2 - b^2])))^\[Beta]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], "\[Beta]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]], ")"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]], ")"]]]], "d"]]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "+", RowBox[List["d", " ", "\[Beta]"]]]], "d"]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], "\[Beta]"]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> β </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> β </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mtext>   </mtext>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> β </mi>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <semantics>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  <annotation-xml encoding='MathML-Content'>  <ci> AppellF1 </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mtext>   </mtext>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> β </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> d </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mi> β </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mi> d </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> - </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> β </mi>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <semantics>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  <annotation-xml encoding='MathML-Content'>  <ci> AppellF1 </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> d </mi>  </mfrac>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> d </mi>  </mfrac>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> - </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> β </mi>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <semantics>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  <annotation-xml encoding='MathML-Content'>  <ci> AppellF1 </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  </mrow>  <mi> d </mi>  </mfrac>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  </mrow>  <mi> d </mi>  </mfrac>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> - </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> β </mi>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <semantics>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  <annotation-xml encoding='MathML-Content'>  <ci> AppellF1 </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> d </mi>  </mfrac>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> d </mi>  </mfrac>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> a </mi>  <mo> - </mo>  <msqrt>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <sin />  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <ci> β </ci>  </apply>  <apply>  <sin />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <cosh />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <sin />  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <ci> β </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <ci> β </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> AppellF1 </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <ci> β </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <ci> β </ci>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  <imaginaryi />  </apply>  </apply>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <ci> β </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> AppellF1 </ci>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <ci> β </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> AppellF1 </ci>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <ci> β </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> AppellF1 </ci>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> d </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["d_", " ", "z_"]], "]"]]]]]], ")"]], "\[Beta]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "d"], "-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]], ")"]]]], "d"]]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]]]], "+", RowBox[List["d", " ", "\[Beta]"]]]], "d"]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", "\[Beta]"]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], "\[Beta]"]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |