| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.0745.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Cos[d z + e] Cosh[c Sqrt[z] + f z], z] == 
 (1/4) ((-(1/(-d - I f)^(3/2))) (I c Sqrt[2 Pi] Cos[e + c^2/(4 (d + I f))] 
      FresnelC[(I c + 2 (d + I f) Sqrt[z])/(Sqrt[-d - I f] Sqrt[2 Pi])] + 
     I c Sqrt[2 Pi] FresnelS[(I c + 2 (d + I f) Sqrt[z])/
        (Sqrt[-d - I f] Sqrt[2 Pi])] Sin[e + c^2/(4 (d + I f))] + 
     2 Sqrt[-d - I f] Sin[e + I c Sqrt[z] + (d + I f) z]) + 
   (1/(-d + I f)^(3/2)) ((-I) c Sqrt[2 Pi] Cos[e - c^2/(4 (-d + I f))] 
      FresnelC[(I c + 2 (-d + I f) Sqrt[z])/(Sqrt[-d + I f] Sqrt[2 Pi])] - 
     I c Sqrt[2 Pi] FresnelS[(I c + 2 (-d + I f) Sqrt[z])/
        (Sqrt[-d + I f] Sqrt[2 Pi])] Sin[e - c^2/(4 (-d + I f))] - 
     2 Sqrt[-d + I f] Sin[e - I c Sqrt[z] - (-d + I f) z])) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["d", " ", "z"]], "+", "e"]], "]"]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["Cos", "[", RowBox[List["e", "+", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]]]]]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", "+", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", RowBox[List["Sin", "[", RowBox[List["e", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["Cos", "[", RowBox[List["e", "-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]]]]]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", "-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", RowBox[List["Sin", "[", RowBox[List["e", "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", "z"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> C </mi>  <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mtext>   </mtext>  </mrow>  </mrow>  <mrow>  <msqrt>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> S </mi>  <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mtext>   </mtext>  </mrow>  </mrow>  <mrow>  <msqrt>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> C </mi>  <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mtext>   </mtext>  </mrow>  </mrow>  <mrow>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> S </mi>  <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation>  </semantics>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mtext>   </mtext>  </mrow>  </mrow>  <mrow>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> f </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <cos />  <apply>  <plus />  <ci> e </ci>  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <cosh />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> c </ci>  </apply>  <apply>  <times />  <ci> f </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> c </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> e </ci>  </apply>  </apply>  <apply>  <ci> FresnelC </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> FresnelS </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> e </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <sin />  <apply>  <plus />  <ci> e </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> c </ci>  <imaginaryi />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> e </ci>  </apply>  </apply>  <apply>  <ci> FresnelC </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <imaginaryi />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> FresnelS </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> e </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <sin />  <apply>  <plus />  <ci> e </ci>  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <imaginaryi />  <ci> f </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["d_", " ", "z_"]], "+", "e_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", RowBox[List["f_", " ", "z_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["Cos", "[", RowBox[List["e", "+", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]]]]]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", "+", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", RowBox[List["Sin", "[", RowBox[List["e", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", "z"]]]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["Cos", "[", RowBox[List["e", "-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]]]]]]], "]"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", "-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]]], " ", RowBox[List["Sin", "[", RowBox[List["e", "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], " ", "z"]]]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |