| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.0874.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Cosh[d z] (a + b Sin[e z]^2 + c Cos[e z]^2)^\[Beta], z] == 
 (1/2) (-((1/(-d + 2 I e \[Beta])) 
     ((E^(d z) ((4 a E^(2 I e z) - b (-1 + E^(2 I e z))^2 + 
          c (1 + E^(2 I e z))^2)/E^(2 I e z))^\[Beta] 
       AppellF1[-((I d)/(2 e)) - \[Beta], -\[Beta], -\[Beta], 
        1 - (I d)/(2 e) - \[Beta], ((-b + c) E^(2 I e z))/
         (-2 a - b - c - 2 Sqrt[(a + b) (a + c)]), ((-b + c) E^(2 I e z))/
         (-2 a - b - c + 2 Sqrt[(a + b) (a + c)])])/
      (4^\[Beta] (1 - ((-b + c) E^(2 I e z))/(-2 a - b - c + 
           2 Sqrt[(a + b) (a + c)]))^\[Beta] 
       (1 + ((-b + c) E^(2 I e z))/(2 a + b + c + 2 Sqrt[(a + b) (a + c)]))^
        \[Beta]))) - (1/(d + 2 I e \[Beta])) 
    ((((4 a E^(2 I e z) - b (-1 + E^(2 I e z))^2 + c (1 + E^(2 I e z))^2)/
        E^(2 I e z))^\[Beta] AppellF1[(I d)/(2 e) - \[Beta], -\[Beta], 
       -\[Beta], 1 + (I d)/(2 e) - \[Beta], ((-b + c) E^(2 I e z))/
        (-2 a - b - c - 2 Sqrt[(a + b) (a + c)]), ((-b + c) E^(2 I e z))/
        (-2 a - b - c + 2 Sqrt[(a + b) (a + c)])])/
     (4^\[Beta] E^(d z) (1 - ((-b + c) E^(2 I e z))/(-2 a - b - c + 
          2 Sqrt[(a + b) (a + c)]))^\[Beta] 
      (1 + ((-b + c) E^(2 I e z))/(2 a + b + c + 2 Sqrt[(a + b) (a + c)]))^
       \[Beta]))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["d", " ", "z"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], "\[Beta]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "\[Beta]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["4", RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "e", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], "-", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]]]], ")"]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d"]], RowBox[List["2", " ", "e"]]]]], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d"]], RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "\[Beta]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["4", RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "d"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "e", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], "-", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]]]], ")"]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "d"]], RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d"]], RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mtext>   </mtext>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> β </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> β </mi>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mn> 4 </mn>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> β </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <semantics>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  <annotation-xml encoding='MathML-Content'>  <ci> AppellF1 </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> β </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mn> 4 </mn>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> β </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <semantics>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  <annotation-xml encoding='MathML-Content'>  <ci> AppellF1 </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  </mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <cosh />  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <sin />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <cos />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <ci> β </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> β </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 4 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <ci> b </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> a </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> β </ci>  </apply>  <apply>  <ci> AppellF1 </ci>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> β </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 4 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <ci> b </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> a </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> β </ci>  </apply>  <apply>  <ci> AppellF1 </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> β </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Cosh", "[", RowBox[List["d_", " ", "z_"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["c_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "\[Beta]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["4", RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "e", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], "-", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]]]], ")"]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d"]], RowBox[List["2", " ", "e"]]]]], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d"]], RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "\[Beta]"]]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["4", RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "d"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "e", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], "-", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], ")"]], "2"]]]]], ")"]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "d"]], RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d"]], RowBox[List["2", " ", "e"]]], "-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], RowBox[List["d", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "\[Beta]"]]]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |