| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.1046.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[z^n Cos[b z^2 + e] Cosh[f z + g], z] == 
  (1/8) ((-((-I) b)^(-1 - n)) E^((-I) e - (I f^2)/(4 b) - g) 
     Sum[2^(j - n) f^(-j + n) (-f - 2 I b z)^(1 + j) 
       (-((I (-f - 2 I b z)^2)/b))^((1/2) (-1 - j)) Binomial[n, j] 
       Gamma[(1 + j)/2, -((I (-f - 2 I b z)^2)/(4 b))], {j, 0, n}] - 
    ((-I) b)^(-1 - n) E^((-I) e - (I f^2)/(4 b) + g) 
     Sum[2^(j - n) (-f)^(-j + n) (f - 2 I b z)^(1 + j) 
       (-((I (f - 2 I b z)^2)/b))^((1/2) (-1 - j)) Binomial[n, j] 
       Gamma[(1 + j)/2, -((I (f - 2 I b z)^2)/(4 b))], {j, 0, n}] - 
    (I b)^(-1 - n) E^(I e + (I f^2)/(4 b) - g) 
     Sum[2^(j - n) f^(-j + n) (-f + 2 I b z)^(1 + j) ((I (-f + 2 I b z)^2)/b)^
        ((1/2) (-1 - j)) Binomial[n, j] Gamma[(1 + j)/2, 
        (I (-f + 2 I b z)^2)/(4 b)], {j, 0, n}] - 
    (I b)^(-1 - n) E^(I e + (I f^2)/(4 b) + g) 
     Sum[2^(j - n) (-f)^(-j + n) (f + 2 I b z)^(1 + j) 
       ((I (f + 2 I b z)^2)/b)^((1/2) (-1 - j)) Binomial[n, j] 
       Gamma[(1 + j)/2, (I (f + 2 I b z)^2)/(4 b)], {j, 0, n}]) /; 
 Element[n, Integers] && n >= 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], RowBox[List["Cos", "[", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", "e"]], "]"]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "e"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["f", "2"]]], RowBox[List["4", " ", "b"]]], "-", "g"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "n"]]], " ", SuperscriptBox["f", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], RowBox[List["1", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], "b"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "j"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "e"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["f", "2"]]], RowBox[List["4", " ", "b"]]], "+", "g"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "f"]], ")"]], RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], RowBox[List["1", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], "b"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "j"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "e"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["f", "2"]]], RowBox[List["4", " ", "b"]]], "-", "g"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "n"]]], " ", SuperscriptBox["f", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], RowBox[List["1", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], "b"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "j"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "e"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["f", "2"]]], RowBox[List["4", " ", "b"]]], "+", "g"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "f"]], ")"]], RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], RowBox[List["1", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], "b"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "j"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]], "]"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mi> e </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> + </mo>  <mrow>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 8 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mi> f </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  <mo> + </mo>  <mi> g </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mtext>   </mtext>  </mrow>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mi> b </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mi> f </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> - </mo>  <mi> g </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mtext>   </mtext>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> f </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mi> b </mi>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mi> f </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mi> g </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mtext>   </mtext>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mi> b </mi>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mi> f </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  <mo> - </mo>  <mi> g </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mtext>   </mtext>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> f </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mi> b </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> n </ci>  </apply>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> e </ci>  </apply>  </apply>  <apply>  <cosh />  <apply>  <plus />  <ci> g </ci>  <apply>  <times />  <ci> f </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 8 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> f </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> g </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> f </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> g </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> f </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> f </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> g </ci>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> f </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> g </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> e </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> f </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", "e_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "e"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["f", "2"]]], RowBox[List["4", " ", "b"]]], "-", "g"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "n"]]], " ", SuperscriptBox["f", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], RowBox[List["1", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], "b"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "j"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "e"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["f", "2"]]], RowBox[List["4", " ", "b"]]], "+", "g"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "f"]], ")"]], RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], RowBox[List["1", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], "b"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "j"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "e"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["f", "2"]]], RowBox[List["4", " ", "b"]]], "-", "g"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "n"]]], " ", SuperscriptBox["f", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], RowBox[List["1", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], "b"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "j"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "e"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["f", "2"]]], RowBox[List["4", " ", "b"]]], "+", "g"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "f"]], ")"]], RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], RowBox[List["1", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], "b"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "j"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]], "]"]]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |