| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.1125.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[z^n Cos[b Sqrt[z] + d z]^m Cosh[f z + g], z] == 
  (-1)^n 2^(-1 - m) Binomial[m, m/2] (E^g f^(-1 - n) Gamma[1 + n, (-f) z] + 
     ((-f)^(-1 - n) Gamma[1 + n, f z])/E^g) (1 - Mod[m, 2]) + 
   2^(-2 - m - 2 n) Sum[Binomial[m, s] 
      ((E^(-g + (b^2 (m - 2 s)^2)/(4 (-f - I d (m - 2 s)))) 
         Sum[(-1)^(-h + j) 4^j ((-I) b (m - 2 s))^(-h - j + 2 n) 
           ((-I) b (m - 2 s) + 2 (-f - I d (m - 2 s)) Sqrt[z])^(h + j) 
           (-(((-I) b (m - 2 s) + 2 (-f - I d (m - 2 s)) Sqrt[z])^2/
              (-f - I d (m - 2 s))))^((1/2) (-1 - h - j)) Binomial[j, h] 
           Binomial[n, j] ((-I) b (m - 2 s) ((-I) b (m - 2 s) + 
              2 (-f - I d (m - 2 s)) Sqrt[z]) Gamma[(1/2) (1 + h + j), 
              -(((-I) b (m - 2 s) + 2 (-f - I d (m - 2 s)) Sqrt[z])^2/
                (4 (-f - I d (m - 2 s))))] + 2 (-f - I d (m - 2 s)) 
             Sqrt[-(((-I) b (m - 2 s) + 2 (-f - I d (m - 2 s)) Sqrt[z])^2/
                (-f - I d (m - 2 s)))] Gamma[(1/2) (2 + h + j), 
              -(((-I) b (m - 2 s) + 2 (-f - I d (m - 2 s)) Sqrt[z])^2/
                (4 (-f - I d (m - 2 s))))]), {j, 0, n}, {h, 0, j}])/
        (-f - I d (m - 2 s))^(2 (1 + n)) + 
       (E^(g + (b^2 (m - 2 s)^2)/(4 (f - I d (m - 2 s)))) 
         Sum[(-1)^(-h + j) 4^j ((-I) b (m - 2 s))^(-h - j + 2 n) 
           ((-I) b (m - 2 s) + 2 (f - I d (m - 2 s)) Sqrt[z])^(h + j) 
           (-(((-I) b (m - 2 s) + 2 (f - I d (m - 2 s)) Sqrt[z])^2/
              (f - I d (m - 2 s))))^((1/2) (-1 - h - j)) Binomial[j, h] 
           Binomial[n, j] ((-I) b (m - 2 s) ((-I) b (m - 2 s) + 
              2 (f - I d (m - 2 s)) Sqrt[z]) Gamma[(1/2) (1 + h + j), 
              -(((-I) b (m - 2 s) + 2 (f - I d (m - 2 s)) Sqrt[z])^2/
                (4 (f - I d (m - 2 s))))] + 2 (f - I d (m - 2 s)) 
             Sqrt[-(((-I) b (m - 2 s) + 2 (f - I d (m - 2 s)) Sqrt[z])^2/
                (f - I d (m - 2 s)))] Gamma[(1/2) (2 + h + j), 
              -(((-I) b (m - 2 s) + 2 (f - I d (m - 2 s)) Sqrt[z])^2/
                (4 (f - I d (m - 2 s))))]), {j, 0, n}, {h, 0, j}])/
        (f - I d (m - 2 s))^(2 (1 + n)) + 
       (E^(-g + (b^2 (m - 2 s)^2)/(4 (-f + I d (m - 2 s)))) 
         Sum[(-1)^(-h + j) 4^j (I b (m - 2 s))^(-h - j + 2 n) 
           (I b (m - 2 s) + 2 (-f + I d (m - 2 s)) Sqrt[z])^(h + j) 
           (-((I b (m - 2 s) + 2 (-f + I d (m - 2 s)) Sqrt[z])^2/
              (-f + I d (m - 2 s))))^((1/2) (-1 - h - j)) Binomial[j, h] 
           Binomial[n, j] (I b (m - 2 s) (I b (m - 2 s) + 
              2 (-f + I d (m - 2 s)) Sqrt[z]) Gamma[(1/2) (1 + h + j), 
              -((I b (m - 2 s) + 2 (-f + I d (m - 2 s)) Sqrt[z])^2/
                (4 (-f + I d (m - 2 s))))] + 2 (-f + I d (m - 2 s)) 
             Sqrt[-((I b (m - 2 s) + 2 (-f + I d (m - 2 s)) Sqrt[z])^2/
                (-f + I d (m - 2 s)))] Gamma[(1/2) (2 + h + j), 
              -((I b (m - 2 s) + 2 (-f + I d (m - 2 s)) Sqrt[z])^2/
                (4 (-f + I d (m - 2 s))))]), {j, 0, n}, {h, 0, j}])/
        (-f + I d (m - 2 s))^(2 (1 + n)) + 
       (E^(g + (b^2 (m - 2 s)^2)/(4 (f + I d (m - 2 s)))) 
         Sum[(-1)^(-h + j) 4^j (I b (m - 2 s))^(-h - j + 2 n) 
           (I b (m - 2 s) + 2 (f + I d (m - 2 s)) Sqrt[z])^(h + j) 
           (-((I b (m - 2 s) + 2 (f + I d (m - 2 s)) Sqrt[z])^2/
              (f + I d (m - 2 s))))^((1/2) (-1 - h - j)) Binomial[j, h] 
           Binomial[n, j] (I b (m - 2 s) (I b (m - 2 s) + 
              2 (f + I d (m - 2 s)) Sqrt[z]) Gamma[(1/2) (1 + h + j), 
              -((I b (m - 2 s) + 2 (f + I d (m - 2 s)) Sqrt[z])^2/
                (4 (f + I d (m - 2 s))))] + 2 (f + I d (m - 2 s)) 
             Sqrt[-((I b (m - 2 s) + 2 (f + I d (m - 2 s)) Sqrt[z])^2/
                (f + I d (m - 2 s)))] Gamma[(1/2) (2 + h + j), 
              -((I b (m - 2 s) + 2 (f + I d (m - 2 s)) Sqrt[z])^2/
                (4 (f + I d (m - 2 s))))]), {j, 0, n}, {h, 0, j}])/
        (f + I d (m - 2 s))^(2 (1 + n))), {s, 0, Floor[(1/2) (-1 + m)]}] /; 
 Element[n, Integers] && n >= 0 && Element[m, Integers] && m > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]], "]"]], "m"], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "g"], " ", SuperscriptBox["f", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "f"]], " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "f"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["f", " ", "z"]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "m", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "g"]], "+", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "j"]]], " ", SuperscriptBox["4", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "j"]]], " ", SuperscriptBox["4", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "g"]], "+", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "j"]]], " ", SuperscriptBox["4", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "j"]]], " ", SuperscriptBox["4", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mi> m </mi>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> + </mo>  <mrow>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mi> g </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mi> f </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mi> g </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> f </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> - </mo>  <mi> g </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> j </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> j </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["j", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> g </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> j </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> j </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["j", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> - </mo>  <mi> g </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> j </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> j </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["j", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> f </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mi> g </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> j </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> j </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["j", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> f </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> m </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> n </ci>  </apply>  <apply>  <power />  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> b </ci>  </apply>  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <cosh />  <apply>  <plus />  <ci> g </ci>  <apply>  <times />  <ci> f </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> g </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <ci> f </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <ci> g </ci>  </apply>  <apply>  <power />  <ci> f </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <cn type='integer'> -2 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> s </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> g </ci>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> j </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> j </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> g </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> j </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> j </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <ci> d </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> g </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> j </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> j </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> f </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> g </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> j </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> j </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> f </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> d </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  <apply>  <in />  <ci> m </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]]]], "]"]], "m_"], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "g"], " ", SuperscriptBox["f", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "f"]], " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "f"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["f", " ", "z"]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "m", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "g"]], "+", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "j"]]], " ", SuperscriptBox["4", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "j"]]], " ", SuperscriptBox["4", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "g"]], "+", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "j"]]], " ", SuperscriptBox["4", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "j"]]], " ", SuperscriptBox["4", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "j"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "j"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |