Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving trigonometric and exponential functions > Involving products of sin and exp > Involving ep z sin(a z) sin(b z) cosh(c z)





http://functions.wolfram.com/01.20.21.1239.01









  


  










Input Form





Integrate[E^(p z) Sin[a z] Sin[b z] Cosh[c z], z] == (-(1/4)) E^(p z) (((-p) Cos[(a - b - I c) z] + (-a + b + I c) Sin[(a - b - I c) z])/(a^2 + b^2 - 2 a (b + I c) + 2 I b c - c^2 + p^2) + (p Cos[(a + b - I c) z] + (a + b - I c) Sin[(a + b - I c) z])/((a + b - I (c - p)) (a + b - I (c + p))) + ((-p) Cos[(a - b + I c) z] + (-a + b - I c) Sin[(a - b + I c) z])/((a - b + I (c - p)) (a - b + I (c + p))) + (p Cos[(a + b + I c) z] + (a + b + I c) Sin[(a + b + I c) z])/((a + b + I (c - p)) (a + b + I (c + p))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "p"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]]]], RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "c"]], "-", SuperscriptBox["c", "2"], "+", SuperscriptBox["p", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["p", " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]]]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "p"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]]]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["p", " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]]]]]], ")"]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <cos /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <cos /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <cos /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <ci> a </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <cos /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Sin", "[", RowBox[List["a_", " ", "z_"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "p"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]]]], RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "c"]], "-", SuperscriptBox["c", "2"], "+", SuperscriptBox["p", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["p", " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]]]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "p"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]]]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["p", " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]]]]]], ")"]]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18